AREA BOUNDED BY CURVES

1. Find the area of the region enclosed by the parabola $y=2-x^{2}$ and the line $y=-x$.
2. Find the area of the region in the first quadrant bounded above by $y=x^{1 / 2}$ and below by the x -axis and the line $\mathrm{y}=\mathrm{x}-2$.
3. Repeat exercise (2) above, but this time integrate with respect to y.
4. Find the area of the crescent-shaped region in the first quadrant that is bounded by $y=$ x^{13} and $y=x^{15}$.
5. Find the area of the region bounded by $y=7-2 x^{2}$ and $y=x^{2}+4$.
6. Find the area of the region enclosed by $y=x^{4}-4 x^{2}+4$ and $y=x^{2}$.
7. Find the area of the region enclosed by $y=x^{4}-4 x^{2}+4$ and $y=x^{2}$.
8. Find the area of the region enclosed by $y=x\left(a^{2}-x^{2}\right)^{1 / 2}$, where $a>0$, and $y=0$.
9. Find the area of the region enclosed by $y=(|x|)^{1 / 2}$ and $5 y=x+6$.
10. Find the area of the region enclosed by $x=y^{3}-y^{2}$ and $x=2 y$.
11. Find the area of the region bounded by $4 x^{2}+y=4$ and $x^{4}-y=1$.
12. Find the area of the region enclosed by $y=2 \sin x$ and $y=\sin (2 x), 0 \leq x \leq \pi$.
13. Find the area of the region enclosed by $y=\cos (\pi x / 2)$ and $y=1-x^{2}$.
14. Find the area of the region enclosed by $y=\sin (\pi x / 2)$ and $y=x$.
15. Find the area of the "triangular" region in the first quadrant that is bounded above by the curve $\mathrm{y}=\mathrm{e}^{2 \mathrm{x}}$, below by the curve $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$, and on the right by the line $\mathrm{x}=\ln 3$.

DIFFERENTLATING INTEGRALS

Differentiate with respect to x each of the following integrals using the FTC and Leibniz's Formula:

1. $y=\int_{3}^{x} \sqrt{5+\cos ^{3} t} d t$
2. $y=\int_{1}^{x} \frac{5}{3+t^{4}} d t$
3. $y=\int_{\sec x}^{4} \frac{1}{1+t^{2}} d t$
4. $y=\int_{1 / x}^{x} \frac{1}{t} d t$
5. $y=\int_{\cos x}^{\sin x} \frac{1}{1-t^{2}} d t$
6. $y=\int_{\sqrt{x}}^{x^{2}} \frac{e^{t}}{t} d t$

USING INTEGRALS TO APPROXIMATE RIEMANN SUMS

Evaluate each of the following limits:

1. $\lim _{n \rightarrow \infty} \frac{1^{5}+2^{5}+3^{5}+\ldots+n^{5}}{n^{6}}$
2. $\lim _{n \rightarrow \infty} \frac{1^{3}+2^{3}+3^{3}+\ldots+n^{3}}{n^{4}}$
3. $\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\sin \frac{3 \pi}{n}+\ldots+\sin \frac{n \pi}{n}\right)$

The nicest child I ever knew
Was Charles Augustus Fortescue.
He never lost his cap, or tore
His stockings or his pinafore:
In eating Bread he made no Crumbs,
He was extremely fond of sums.

- Hilaire Belloc, Cautionary Tales (1907)

