CLASS DISCUSSION: 29 AUGUST 2018

(CALCULATOR FREE)

1. (algebra review) For which non-zero value of k will the following quadratic equation have only one real root?

$$
7 x^{2}+k x+3 k=0
$$

2. Consider the following rational functions. For each function, determine the limiting behavior as $\mathrm{x} \rightarrow \infty$. Briefly explain how you arrived at your answers.
(a) $y=\frac{(2 x-5)^{2}}{x^{2}}$

$$
\text { Answer: } \quad \text { As } \mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow
$$

\qquad
(b) $y=\frac{(x+5)^{2}(x-11)^{3}}{(x-9)(x+13)(x-1)(7 x-44)}$

Answer: \quad As $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$ \qquad
(c) $y=\frac{99(x-15)(3 x+11)}{(x-9)^{2}(19 x+13)}$

Answer: \quad As $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$ \qquad
3. Find an equation of a rational function whose graph is given below:

4. Sketch the graph of each of the following rational functions (that includes all the significant properties):
(a) $f(x)=(x-1)^{2}(x-3)^{3}(3 x+5)$
(b) $f(x)=\frac{x^{2}+5}{(x+1)^{2}}$
(c) $f(x)=\frac{(x-1)(x+2)}{x-3}$
(d) $f(x)=\frac{(x-3)^{2}(x-4)^{3}(x-5)^{5}}{x^{2}\left(2 x^{2}+x+1\right)^{4}}$

5. (University of Michigan problem)

The graph below shows the velocity of a bug traveling along a straight line on the classroom floor.

At what time(s) does the bug turn around?
A) At 3 seconds.
C) At 4 seconds and again at 7 seconds.
B) At 2 seconds and again at 7 seconds.
D) Never.

6. (University of Michigan problem)

[11 points] Consider the graphs of $y=k(x)$ and $y=\ell(x)$ given below:

$$
\text { GRAPH OF } y=k(x)
$$

$$
\text { GRAPH OF } y=\ell(x)
$$

You must show your work in both parts of this problem to receive full credit. Write your final answers in the spaces provided.
a. [5 points] Find a formula for $k(x)$, assuming $k(x)$ is a polynomial of degree seven with zeros at $x=-1, x=0$ and $x=3$.
b. [6 points] Find a piecewise-defined formula for $\ell(x)$ on $[-2,6]$, given that the graph of $y=\ell(x)$ is made up of a line and a parabola.
7. Compute each of the following limits. Explain your reasoning. Do not use calculators.
(a) $\lim _{x \rightarrow \infty} \frac{(x+11)^{2}(3 x-7)^{3}}{\left(2 x^{2}+4\right)^{4}(x+2017)}$
(b) $\lim _{x \rightarrow \infty} \frac{1+\sqrt{x}}{5+x^{2}}$
8. Consider the rational function F defined by

$$
F(x)=\frac{15 x^{3}+x^{2}-6 x}{6 x^{2}+x-2} \text { if } x \neq 1 / 2 \text { and } x \neq-2 / 3
$$

(a) Find the $\lim \mathrm{F}(\mathrm{x})$ as $\mathrm{x} \rightarrow \infty$ if it exists. Explain.
(b) Find the $\lim \mathrm{F}(\mathrm{x})$ as $\mathrm{x} \rightarrow-\infty$ exist? Explain.
9. (University of Michigan problem
[5 points] A portion of the graphs of $y=f(x)$ and $y=g(x)$ are given below. You do not need to show any work for this problem.

a. [2 points] Assume that $g(x)$ is an invertible function. Which of the following could be the graph of $y=g^{-1}(x)$? Circle exactly one of the four graphs below.

b. [3 points] Which of the following could be the graph of $y=g(f(x))$? Circle exactly one of the four graphs below.

10. Let $\mathrm{y}=\mathrm{g}(\mathrm{x})$ be defined as follows

$$
g(x)=\left\{\begin{array}{l}
3-x \text { when } x<2 \\
2 \text { if } x=2 \\
\frac{x}{2} \text { if } x>2
\end{array}\right.
$$

Sketch the curve.
11. Does the limit of $\mathrm{g}(\mathrm{x})$ as $\mathrm{x} \rightarrow \infty$ exist?

$$
g(x)=\frac{3 x^{2}-4 x+1}{x^{4}-1}
$$

If so, find it; if not explain!

To be pleased with one's limits is a wretched state.

- Johann Wolfgang von Goethe (1749-1832)

