CLASS DISCUSSION: 12 NOVEMBER 201

THE RIEMANN INTEGRAL

Georg Friedrich Bernhard Riemann

$$
(1826-1866)
$$

1. Using the area interpretation of the Riemann integral, evaluate each of the following:
(a) $\int_{-2}^{1}|x| d x$
(b) $\int_{-3}^{2}|3 x+4| d x$
(c) $\int_{0}^{1} \sqrt{1-x^{2}} d x$
(d) $\int_{-3}^{3} x^{1789} \sin \left(x^{2}+1\right) d x$
(e) $\int_{0}^{2 \pi} \cos x d x$
2. Suppose that $\int_{-2}^{3}(f(x)+1) d x=0$. Evaluate $\int_{-2}^{3}(f(x)-x) d x$.
3. Let g be a continuous function on the interval $[-5,5]$. Suppose that

$$
\int_{0}^{5} g(x) d x=4
$$

Evaluate each of the following Riemann integrals:
(a) $\int_{0}^{5}(g(x)+3) d x$
(b) $\int_{-2}^{3} g(x+2) d x$
(c) $\int_{-5}^{5} g(x) d x$ if g is even
(d) $\int_{-5}^{5} g(x) d x$ if g is odd
4. Find the constants a and b that maximize the value of the definite integral:

$$
\int_{a}^{b}\left(4-x^{2}\right) d x
$$

Justify your answer!
5. By using an appropriate Riemann sum, determine:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \sum_{j=1}^{n} j^{3}
$$

6. Find a formula for $\int_{a}^{b} x d x$
7. Express the average value of each of the following functions as a Riemann integral. (Do not try to evaluate.)
(a) $f(x)=\sin x$ over $[0, \pi]$
(b) $\mathrm{g}(\mathrm{x})=(\mathrm{x}-1)^{2}$ over $[0,3]$
(c) $\mathrm{h}(\mathrm{x})=(\ln \mathrm{x}) / \mathrm{x}$ over [1, 4]
(d) $\mathrm{s}(\mathrm{t})=\cosh \mathrm{t}$ over $[0, \ln 2]$
8. State the major properties of the Riemann integral.
9. Suppose that h is integrable and that $\int_{-1}^{1} h(x) d x=0$ and $\int_{-1}^{3} h(x) d x=6$.

Find:
(a) $\int_{1}^{3} h(x) d x$
(b) $\int_{1}^{3}(5 h(x)+3) d x$
10. Suppose that f and h are integrable and that

$$
\int_{1}^{9} f(x) d x=-1, \int_{7}^{9} f(x) d x=5 \text { and } \int_{7}^{9} h(x) d x=4
$$

Find:
(a) $\int_{1}^{9}-3 f(x) d x$
(b) $\int_{7}^{9}(f(x)+h(x)) d x$
(c) $\int_{7}^{9}(5 f(x)-3 h(x)) d x$
(d) $\int_{1}^{7}(f(x)-|x-4|) d x$
11. Given the formula for $\int_{a}^{b} x^{2} d x$, find the average value of:
(a) $f(x)=x^{2}-1$ over $[2,4]$
(b) $\mathrm{g}(\mathrm{x})=(\mathrm{x}-2)^{2}$ over $[0,2]$
(c) $h(x)=5-3 x-4 x^{2}$ over $[0,2]$

I'm very good at integral and differential calculus, I know the scientific names of beings animalculous; In short, in matters vegetable, animal, and mineral, I am the very model of a modern Major-General. About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse.

- W. S. Gilbert, The Pirates of Penzance (1879)

