DISCUSSION QUESTIONS: 16 OCTOBER 2019

LOGARITHMIC DIFFERENTLATION

"First you forget logarithms. Then you forget how to do long division. Then the multiplication table begins to go..."

1. (a) Can you find a formula for $\mathrm{d} / \mathrm{dx}(\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{x}))$? (Called Leibniz rule.)
(b) Can you extend this result to a product rule for four or more factors?
(c) Using your result from (b), compute $d / d x\left\{5\left(x^{3}\right)(\cos x)(\ln x) e^{x}\right\}$
(d) Find any and all critical points of the function: $y=\left(x^{2}+3\right)(x-5) e^{x}$
2. (UC Davis) Logarithmic differentiation is a means of differentiating algebraically complicated functions or functions for which the ordinary rules of differentiation do not apply. For example, if you wish to differentiate expressions where a variable is raised to a variable power, logarithmic differentiation is an invaluable technique.
(a) Differentiate $g(x)=x^{2 x+3}$.
(b)
1.) $D\left\{x^{(2 x+3)}\right\}=(2 x+3) x^{(2 x+3)-1}=(2 x+3) x^{(2 x+2)}$
and
2.) $D\left\{x^{(2 x+3)}\right\}=x^{(2 x+3)}(2) \ln x$.

BOTH OF THESE SOLUTIONS ARE WRONG because the ordinary rules of differentiation do not apply. Logarithmic differentiation will provide a way to differentiate a function of this type. It requires deft algebra skills and careful use of the following unpopular, but wellknown, properties of logarithms. Though the following properties and methods are true for a logarithm of any base, only the natural logarithm, $\ln \mathrm{x}$, will be used in this problem set.
3.

PROPERTIES OF THE NATURAL LOGARITHM

1. $\ln 1=0$.
2. $\ln e=1$.
3. $\ln e^{x}=x$.
4. $\ln y^{x}=x \ln y$.
5. $\ln (x y)=\ln x+\ln y$.
6. $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$.
7.

Avoid the following FALSE FRIENDS:

1. $\ln (x+y)=\ln x+\ln y$
2. $\ln (x-y)=\ln x-\ln y$
3. $\ln (x y)=\ln x \ln y$.
4. $\ln \left(\frac{x}{y}\right)=\frac{\ln x}{\ln y}$
5. $\frac{\ln x}{\ln y}=\ln x-\ln y$.
6. (UC Davis) The following problems range in difficulty from average to challenging.

- PROBLEM 1: Differentiate $y=x^{x}$.
- PROBLEM 2: Differentiate $y=x^{(e x)}$.
- PROBLEM 3: Differentiate $y=\left(3 x^{2}+5\right)^{1 / x}$
- PROBLEM 4 : Differentiate

$$
y=(\sin x)^{x^{3}}
$$

- PROBLEM 5 : Differentiate

$$
y=7 x(\cos x)^{x / 2}
$$

- PROBLEM 6 : Differentiate

$$
y=\sqrt{x}^{\sqrt{x}} e^{x^{2}}
$$

- PROBLEM 7 : Differentiate

$$
y=x^{\ln x}(\sec x)^{3 x}
$$

- PROBLEM 8: Differentiate

$$
y=\frac{(\ln x)^{x}}{2^{3 x+1}}
$$

- PROBLEM 9 : Differentiate

$$
y=\frac{x^{2 x}(x-1)^{3}}{(3+5 x)^{4}}
$$

- PROBLEM 10: Consider the function

$$
f(x)=\frac{x^{5} e^{x}(4 x+3)}{5^{\ln x}(3-x)^{2}}
$$

Find an equation of the line tangent to the graph of f at $x=1$.

- PROBLEM 11: Consider the function

$$
f(x)=\pi^{2}+2^{x}+x^{2}+x^{1 / x}
$$

Determine the slope of the line perpendicular to the graph of f at $x=1$.

- PROBLEM 12: Differentiate $f(x)=x^{\left(x^{\left(x^{4}\right)}\right)}$. Then determine the slope of the normal line to the graph of f at $x=1$.

Additional exercises:

6. Find $\frac{d y}{d x}$ if $x^{y}=y^{x}$. Hint: Use logarithmic differentiation.
7. Using logarithmic differentiation, find dy/dx if:
(a) $y=\frac{x(x-9)^{5} \sqrt{x+5}}{x^{5}+99}$
(b) $y=7(x-9)^{3}\left(x^{3}+x+1\right)^{5}$
(c) $y=\left(\sin ^{3} x\right)\left(\tan ^{5} x\right)(\ln x)^{2}$
(d) $y^{x}=(x+1)^{3 x}$
(e) $\quad y^{\sin x}=(\ln x)^{y}$
(f) $f(x)=\left(5-3 x^{2}\right)^{7} \sqrt{6 x^{2}+8 x-2019}$
