DISCUSSION QUESTIONS: 16 OCTOBER 2019

LOGARITHMIC DIFFERENTIATION

- **1.** (a) Can you find a formula for d/dx (f (x) g(x) h(x))? (Called *Leibniz rule*.)
 - (b) Can you extend this result to a product rule for four or more factors?
 - (c) Using your result from (b), compute $d/dx \{5(x^3) (\cos x) (\ln x) e^x \}$
 - (d) Find any and all critical points of the function: $y = (x^2 + 3) (x 5) e^x$
- 2. (UC Davis) Logarithmic differentiation is a means of differentiating algebraically complicated functions or functions for which the ordinary rules of differentiation do not apply. For example, if you wish to differentiate expressions where a variable is raised to a variable power, logarithmic differentiation is an invaluable technique.
 - (a) Differentiate $g(x) = x^{2x+3}$.

(b) An example of two COMMON INCORRECT SOLUTIONS are:

1.)
$$D\{x^{(2x+3)}\} = (2x+3)x^{(2x+3)-1} = (2x+3)x^{(2x+2)}$$

and

2.)
$$D\{x^{(2x+3)}\} = x^{(2x+3)}(2)\ln x$$

BOTH OF THESE SOLUTIONS ARE WRONG because the ordinary rules of differentiation do not apply. Logarithmic differentiation will provide a way to differentiate a function of this type. It requires deft algebra skills and careful use of the following unpopular, but well-known, properties of logarithms. Though the following properties and methods are true for a logarithm of any base, only the natural logarithm, ln x, will be used in this problem set.

PROPERTIES OF THE NATURAL LOGARITHM

- 1. $\ln 1 = 0$.
- 2. $\ln e = 1$.
- 3. $\ln e^x = x$.
- $4. \ln y^x = x \ln y \; .$
- 5. $\ln(xy) = \ln x + \ln y \; .$
- 6. $\ln\left(\frac{x}{y}\right) = \ln x \ln y$.

Avoid the following **FALSE FRIENDS**:

1. $\ln(x+y) = \ln x + \ln y$.

2.
$$\ln(x - y) = \ln x - \ln y$$
.

3.
$$\ln(xy) = \ln x \ln y$$

4.
$$\ln\left(\frac{x}{y}\right) = \frac{\ln x}{\ln y}$$
.

5.
$$\frac{\ln x}{\ln y} = \ln x - \ln y \; .$$

- **5.** (*UC Davis*) The following problems range in difficulty from average to challenging.
 - *PROBLEM 1:* Differentiate $y = x^x$.
 - *PROBLEM 2:* Differentiate $y = x^{(ex)}$.
 - *PROBLEM 3* : Differentiate $y = (3x^2+5)^{1/x}$
 - *PROBLEM 4* : Differentiate $y = (\sin x)^{x^3}$
 - *PROBLEM 5* : Differentiate $y = 7x(\cos x)^{x/2}$
 - *PROBLEM 6* : Differentiate $y = \sqrt{x}^{\sqrt{x}} e^{x^2}$
 - *PROBLEM 7*: Differentiate $y = x^{\ln x} (\sec x)^{3x}$
 - *PROBLEM 8* : Differentiate $y = \frac{(\ln x)^x}{2^{3x+1}}$
 - *PROBLEM 9* : Differentiate

$$y=rac{x^{2\,x}(x-1)^3}{(3+5x)^4}$$

• PROBLEM 10: Consider the function

$$f(x)=rac{x^5e^x(4x+3)}{5^{\ln x}(3-x)^2}$$

Find an equation of the line tangent to the graph of f at x = 1.

• PROBLEM 11: Consider the function

•

$$f(x) = \pi^2 + 2^x + x^2 + x^{1/x}$$

Determine the slope of the line perpendicular to the graph of f at x = 1.

• *PROBLEM 12:* Differentiate $f(x) = x^{(x^{(x^4)})}$. Then determine the slope of the normal line to the graph of *f* at *x*=1.

Additional exercises:

- **6.** Find $\frac{dy}{dx}$ if $x^y = y^x$. Hint: Use logarithmic differentiation.
- **7.** Using *logarithmic differentiation*, find dy/dx if:

(a)
$$y = \frac{x(x-9)^5 \sqrt{x+5}}{x^5+99}$$

(b) $y = 7(x-9)^3 (x^3+x+1)^5$
(c) $y = (\sin^3 x)(\tan^5 x)(\ln x)^2$
(d) $y^x = (x+1)^{3x}$

(e)
$$y^{\sin x} = (\ln x)^y$$

(f)
$$f(x) = (5 - 3x^2)^7 \sqrt{6x^2 + 8x - 2019}$$