DISCUSSION QUESTIONS: 24 SEPTEMBER

SHORTCUTS APPLIED TO CURVE SKETCHING, CONTINUED

I Using the shortcuts of differentiation when appropriate, compute the derivative of each of the following functions.
(A) $y=2018+3 x-\pi x^{4}+e^{1789}$
(B) $y=x \sin x$
(C) $y=\frac{x+3}{x+7}$
(D) $y=\frac{x}{\sin x}$
(E) $y=x^{3} \cos x-x+1$
(F) $y=\left(x^{2}+4 x-1\right)\left(x^{3}+5 x^{4}-x^{3}+x^{2}+3 x+13\right)$
(G) $y=\sin ^{2} x$

II (a) Find the equations of the tangent and normal lines to the curve

$$
y=\frac{x-4}{x+1} \text { at } x=3
$$

(b) Find the equations of the tangent and normal lines to the curve

$$
\mathrm{y}=\sin \mathrm{x} \text { at } \mathrm{x}=\pi / 4
$$

III Using appropriate shortcuts, find formulas for the derivatives of

$$
y=\tan x \text { and } y=\sec x .
$$

V Sketch the curve $\mathrm{y}=\mathrm{x}^{3}(\mathrm{x}-2)^{2}$. Over which interval(s) is the graph rising? falling?
Locate any local maxima or minima.
VI Sketch the curve $y=\frac{x-4}{x+1}$ (cf. problem II a). Over which interval(s) is the graph rising? falling? Locate any local maxima or minima.

VII Sketch the curve $\mathrm{y}=\mathrm{x} \mathrm{e}^{\mathrm{x}}$. Over which interval(s) is the graph rising? falling? Locate any local maxima or minima.

X Sketch the curve $\mathrm{y}=1 / \mathrm{x}+\mathrm{x}^{2}$ over the interval $(0, \infty)$. Over which interval(s) is the graph rising? falling? Locate any local maxima or minima.

XI Below is the graph of the function

$$
f(x)=r x e^{-q x}
$$

where r and q are constants. Assume that both r and q are greater than 1 . The function $f(x)$
passes through the origin and has a local maximum at the point $P=\left(\frac{1}{q}, \frac{r}{q} e^{-1}\right)$, as shown in the graph.

a. Justify, using the first-derivative test that the point P is a local maximum.
b. What are the x-coordinates of the global maximum and minimum of $f(x)$ on the domain $[0$, 1]? (If $f(x)$ does not have a global maximum on this domain, say "no")
c. What are the x-coordinates of the global maximum and minimum of $f(x)$ on the domain $(-\infty$, ∞)? (If $f(x)$ does not have a global maximum on this domain, say "no global maximum", and similarly if $f(x)$ does not have a global minimum.)
d. Suppose that $g(x)$ is a function with $g^{\prime}(x)=f(x)$. Find x-values of all local maxima and minima of $g(x)$. Justify that each maximum you find is a maximum and each minimum is a minimum.

