DISCUSSION QUESTIONS: 26 SEPTEMBER

SHORTCUTS APPLED TO CURVE SKETCHING

1. By employing shortcuts, compute the derivatives of $y=\tan x$ and $y=\sec x$.
2. What can you say about $\frac{d}{d x} b^{x}$ where b is a positive constant?
3. (a) On the axes below, sketch graph of a single differentiable function, $y=f(x)$, which has all of the following features.

- $f(5)=4$
- $f^{\prime}(5)=-1$
- $f^{\prime}(x)>0$ for all $x<4$
- $f^{\prime \prime}(x)>0$ for all $x<2$
- $f^{\prime \prime}(x)<0$ for all $x>2$
- $f^{\prime}(x)<0$ for all $x>4$

(b) Using the given information, find an equation of the line tangent to the graph of f at $\mathrm{x}=5$.
(c) Use your answer from part (b) to approximate $f(6)$.
(d) From the given conditions (i.e., not just from your graph), will the approximation in part be an overestimate or an underestimate? Explain--using a complete sentence.

4. Review: The graphs of f, f^{\prime}, and $f^{\prime \prime}$ are shown below. Which is whch?

5. Review: A scientist is growing a very large quantity of mold. Initially, the mass of mold grows exponentially, but after many hours, the mass stabilizes at 24 kilograms.
Suppose that t hours after the scientist begins, the mass of mold, in kilograms, can be modeled by the function M defined by the equation

$$
M(t)= \begin{cases}0.41 e^{0.72 t} & \text { if } 0 \leq t \leq 5 \\ \frac{2 t^{3}}{a t^{b}+c} & \text { if } t>5\end{cases}
$$

6. (a) Find the value of k between 0 and 5 so that $M(k)=1$. Then interpret the equation $M(k)=1$ in the context of this problem. Use a complete sentence and include units.
(b) Assuming that M is a continuous function of t, determine $\lim _{x \rightarrow \infty} M(t)$ and the values of a, b, and c.
7. (a) Find the equations of the tangent and normal lines to the curve

$$
y=\frac{x-4}{x+1} \text { at } x=3
$$

(b) Find the equations of the tangent and normal lines to the curve

$$
\mathrm{y}=\sin \mathrm{x} \text { at } \mathrm{x}=\pi / 4 \text {. }
$$

8. Using appropriate shortcuts, find formulas for the derivatives of

$$
\mathrm{y}=\tan \mathrm{x} \text { and } \mathrm{y}=\sec \mathrm{x} .
$$

9. Charlotte, the spider, dances along the x-axis according to the rule

$$
\left.x(t)=t^{3}-3 t+5 \text {. (Here time is measured in seconds and distance in } c m .\right)
$$

(a) Find Charlotte's velocity at time $\mathrm{t}=2 \mathrm{sec}$.
(b) Find Charlotte's acceleration at time $\mathrm{t}=2 \mathrm{sec}$.
10. Sketch the curve $y=\frac{x-4}{x+1}$ (cf. problem II a). Over which interval(s) is the graph rising? falling? Locate any local maxima or minima.
11. Sketch the curve $y=\frac{x-3}{x^{2}+1}$. Over which interval(s) is the graph rising? falling? Locate any local maxima or minima.
12. Consider the curve $y=b+c \sin x$. For each of the following values of b and c, determine when the graph is rising and when it is falling:
(1) $\mathrm{b}=3, \mathrm{c}=1$
(2) $\mathrm{b}=\mathrm{c}=1$
(3) $\mathrm{b}=1, \mathrm{c}=2$
13. Sketch the curve $\mathrm{y}=1 / \mathrm{x}+\mathrm{x}^{2}$ over the interval $(0, \infty)$. Over which interval(s$)$ is the graph rising? falling? Locate any local maxima or minima.
14. Below is the graph of the function

$$
f(x)=r x e^{-q x},
$$

where r and q are constants. Assume that both r and q are greater than 1 . The function $f(x)$ passes through the origin and has a local maximum at the point $P=\left(\frac{1}{q}, \frac{r}{q} e^{-1}\right)$, as shown in the graph.

a. Justify, using the first-derivative test that the point P is a local maximum.
b. What are the x-coordinates of the global maximum and minimum of $f(x)$ on the domain [0, 1]? (If $f(x)$ does not hay maximum on this domain, say "no
c. What are the x-coordinates of the global maximum and minimum of $f(x)$ on the domain $(-\infty, \infty)$? (If $f(x)$ does not have a global maximum on this domain, say "no global maximum", and similarly if $f(x)$ does not have a global minimum.)
d. Suppose that $g(x)$ is a function with $g^{\prime}(x)=f(x)$. Find x-values of all local maxima and minima of $g(x)$. Justify that each maximum you find is a maximum and each minimum is a minimum.

