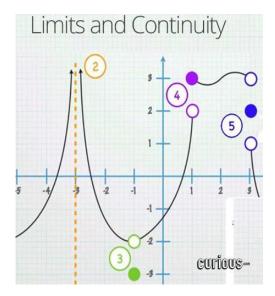

**DISCUSSION: 5 & 7 SEPTEMBER** 

## limits & continuity




Fractal tree

- I Evaluate each of the following limits or explain why the limit fails to exist.
  - 1.  $\lim_{x \to 3} \frac{x-3}{x^2 5x + 6}$
  - 2.  $\lim_{x \to 3} \frac{x^3 27}{x 3}$
  - 3.  $\lim_{x \to 1} \frac{x^4 1}{x^2 1}$
  - 4.  $\lim_{x \to 1} \frac{x+9}{x^2-4}$
  - 5.  $\lim_{x \to 1} \frac{x^4 1}{x^3 1}$
  - $6. \lim_{x \to 0} \frac{|x|}{x}$
  - $7. \quad \lim_{x \to 16} \frac{\sqrt{x} 4}{x 16}$
  - $8. \quad \lim_{x \to 1} \frac{\frac{1}{x} 1}{x 1}$

9. 
$$\lim_{x \to 4} \sqrt{\frac{x+5}{x+12}}$$
  
10. 
$$\lim_{x \to 1} \frac{x^2 - 1}{(x-1)^3}$$
  
11. 
$$\lim_{x \to \infty} \frac{x(3x - 2018)^3}{(9+x)^2(x^2 + x + 2018)(2x - 1)(x + 11))}$$
  
12. 
$$\lim_{x \to -\infty} \frac{3x^4 + 4\sin x}{(x-1)^4 + 3x + \cos 5x}$$
  
13. 
$$\lim_{x \to \infty} \frac{(4x+1)(x+3)^5}{(x+1)^3(x-99)^4}$$

- **II** State the *limit laws*.
- **III** Define *continuity* of a function y = f(x) at x = a. What does it mean for a function to be *continuous*?
- **IV** (a) For each of the four types of discontinuity (*removable, infinite, jump, essential*) give several examples.
  - (b) For the graph below, characterize each of the four discontinuities.



(c) Give an example of an *essential discontinuity*.

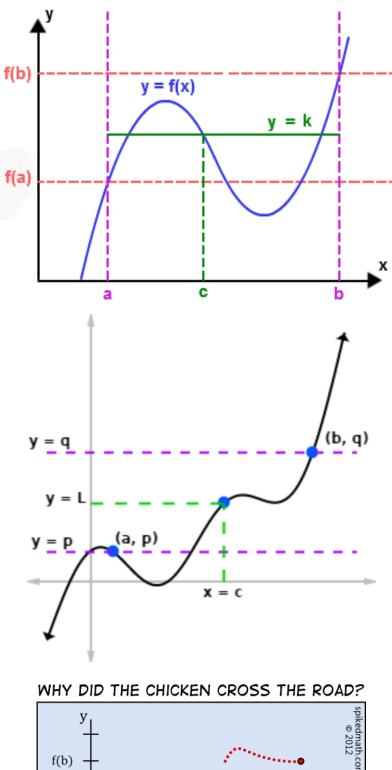
**V** Consider each of the following functions and the given point on the x-axis. Does the function have a *continuous extension* at the given point? Explain.

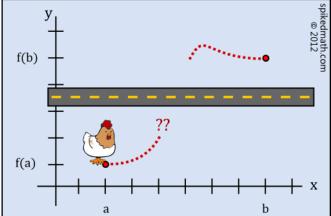
1. 
$$f(x) = \frac{x-2}{x-3}, x = 3$$

2. 
$$G(x) = \frac{x^2 - 9}{x - 3}, x = 3$$

3. 
$$H(x) = \frac{2x^2 - 13x + 20}{3x^2 - 13x + 4}, x = 4$$

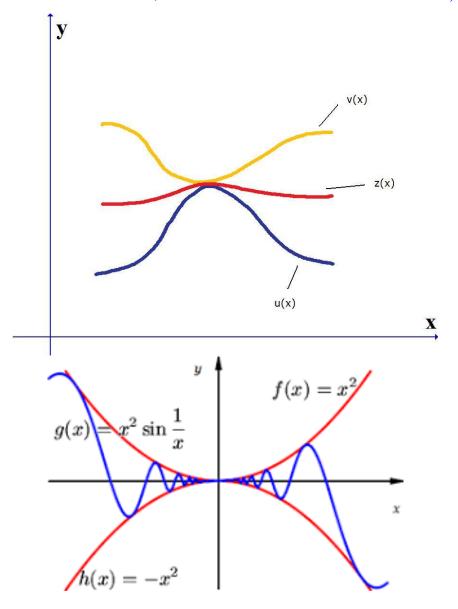
4. 
$$g(x) = \frac{2x^2 - 13x + 20}{3x^2 - 13x + 4}, \ x = 1/3$$


**VI** For which value of *a* is the following function *continuous everywhere?* 


$$f(x) = \begin{cases} x^2 - 1 & \text{for } x < 3\\ 2ax & \text{for } x \ge 3 \end{cases}$$

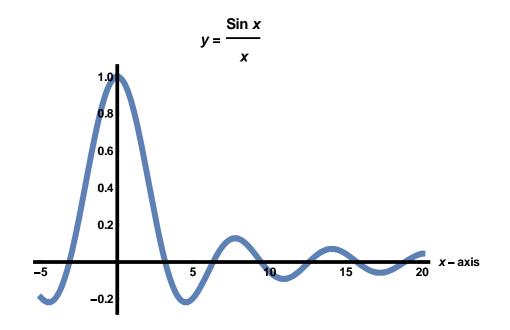
**VII** For which values of *a* and *b* is the following function *continuous everywhere*?

$$g(x) = \begin{cases} ax + 2b & \text{for } x \le 0\\ x^2 + 3a - b & \text{for } 0 < x \le 2\\ 3x - 5 & \text{for } x > 2 \end{cases}$$


**VIII** State the *Intermediate Value Theorem*. Using the IVT, prove that the polynomial  $f(x) = x^4 + 4x^3 - 20x + 11$  must have a root between x = 0 and x = 1.






THE INTERMEDIATE VALUE THEOREM.

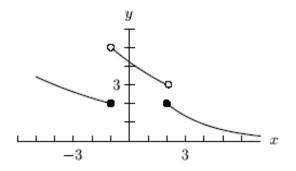
IX State the Squeeze Theorem (a.k.a. Sandwich Theorem, Pinching Theorem, Two Gendarmes Theorem, Two Policemen and a Drunk Theorem).



**X** (a) Is the function  $f(x) = (\sin x)/x$  even or odd or neither?

(b) Using the Sandwich Theorem prove that sin x/x → 1 as x → 0.
 (This result is the key to our being able to differentiate the trig functions.)




## **Additional exercises**

1. Compute each of the following limits. Explain your reasoning. Do not use calculators.

(a) 
$$\lim_{x \to \infty} \frac{(x+11)^2 (3x-7)^3}{(2x^2+4)^4 (x+2015)}$$
  
(b) 
$$\lim_{x \to \infty} \frac{1+\sqrt{x}}{5+x^2}$$
  
(c) 
$$\lim_{x \to 2} \frac{\frac{1}{x} - \frac{2}{x^2}}{2-x}$$
  
(d) 
$$\lim_{x \to 0} \left(e^{x^2} - x^{e^2}\right)$$
  
(e) 
$$\lim_{x \to 3/2} \frac{24x^3 + 7x^2 - 15x}{4x^3 + 4x^2 - 15x}$$

2. Use the graph below to find approximate values for each of the following limits (if they exist).

- (a)  $\lim_{x\to -4} f(x)$
- (b)  $\lim_{x\to -1} f(x)$
- (c)  $\lim_{x\to 2} f(x)$
- (d)  $\lim_{x\to 6} f(x)$
- (e)  $\lim_{x\to -1^+} f(x)$
- $(f) \lim_{x\to 2^-} f(x)$

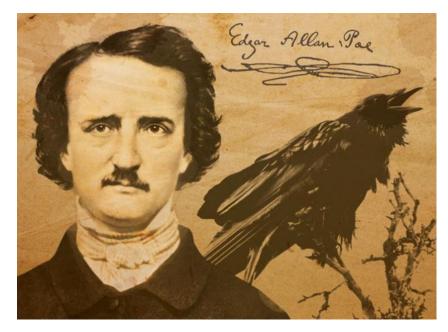


3. Calculate each of the following limits or explain why the limit does not exist. Justify each answer. If you use the *Squeeze Theorem*, be precise.

(a) 
$$\lim_{x \to 3} \frac{x^4 - 11}{(x - 3)^4}$$

(b) 
$$\lim_{x \to 0} x^8 \cos^4(1/x)$$

(c) 
$$\lim_{x \to \infty} \frac{\sin(\ln(5+x))}{x+1}$$
  
(d) 
$$\lim_{x \to 2} \frac{x^4 - 16}{x-2}$$


4. Compute each of the following limits or explain why the limit fails to exist. Justify your reasoning. Do not use a calculator.

(a) 
$$\lim_{x \to 2^{-}} \frac{x^2(x-2)(x+3)}{|x-2|}$$
  
(b)  $\lim_{x \to 1} \left(\frac{\frac{1}{x^2}-1}{|x-1|}\right)$   
(c)  $\lim_{x \to 1^{-}} \frac{x}{|x-1|}$ 

(c) 
$$\lim_{x \to 0} \frac{1}{\cos 9x}$$

(d) 
$$\lim_{x \to 0} \sin \frac{1}{x}$$

(e) 
$$\lim_{x \to \infty} \left( \frac{\sin x}{x} + \cos\left(\frac{13}{x}\right) \right)$$



"I could have clasped the red walls to my bosom as a garment of eternal peace. "Death," I said, "any death but that of the pit!" Fool! might I have not known that into the pit it was the object of the burning iron to urge me?"

- Edgar Allan Poe, The Pit and the Pendulum

 COURSE HOME PAGE
 DEPARTMENT HOME PAGE
 LOYOLA HOME PAGE