MATH 161

ANSWERS: TEST I
SEPTEMBER 2017

1. Albertine orders a large cup of coffee at Metropolis on Granville. Let $\mathrm{F}(\mathrm{t})$ be the temperature in degrees Fahrenheit of her coffee t minutes after the coffee is placed on her tray.
(a) (2 pts) Explain the meaning of the statement: $\mathrm{F}(9)=167$. (Use complete sentences. Avoid any mathematical terms!)

coffee.
(b) (3 pts) Explain the meaning of the statement: $\quad \mathrm{F}^{-1}(99)=17.5$
(c) (3 pts) Give the practical interpretation of the statement: $\mathrm{F}^{\prime}(9)=-$ 1.10. (Use complete sentences. Do not use the words "derivative" or "rate" or any other mathematical term in your explanation.)
(d) (1 pt) What are the units of $\mathrm{F}^{\prime}(9)$?

Answer: ${ }^{\circ} \mathrm{F} /$ minute (since $\Delta F / \Delta t$ represents change in temp/ change in time.)
(e) (3 pts) Using the information given in parts (a) and (c), estimate the temperature of Albertine's coffee seven minutes after she has been handed the

Answer: $169.2^{\circ} \mathrm{F}$.
(f) (3 pts) EXTRA CREDIT

Explain the meaning of the statement:

$$
\left(F^{-1}\right)^{\prime}(99)=-1
$$

2. (4 pts each) For each of the following three sets of axes, exactly one of the following statements (a) (e) is true. You may use a letter more than once. In the space provided next to each figure, enter the letter of the true statement for that figure. For each graph, note that the x and y scales are not the same.
(a) h is the derivative of f, and f is the derivative of g.
(b) g is the derivative of f, and f is the derivative of h.
(c) g is the derivative of h, and h is the derivative of f.
(d) h is the derivative of g, and g is the derivative of f.
(e) None of (a)-(d) are possible.

True Statement: A

True Statement: E

True Statement: D
3. (12 pts) Using the limit definition of the derivative, write an explicit expression for the derivative of the function

$$
g(x)=(\cos x)^{x} \text { at } x=3
$$

Do not try to calculate this derivative.

Answer:

$$
g^{\prime}(3)=\lim _{h \rightarrow 0} \frac{g(h+3)-g(3)}{h}=\lim _{h \rightarrow 0} \frac{(\cos (h+3))^{h+3}-(\cos 3)^{3}}{h}
$$

4. (a) (6 pts) Find $\lim _{x \rightarrow \infty} f(x)$ if, for all $x>5$,

$$
\frac{4 x-1}{x}<f(x)<\frac{4 x^{2}+3 x}{x^{2}}
$$

Explain!
Which theorem are you using?

Answer: Use the Squeeze Theorem to conclude that $f(x) \rightarrow 4$ as $x \rightarrow \infty$.
(b) (6 pts) Show that $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+5 \mathrm{e}^{\mathrm{x}}+1$ has at least one real root. Explain!

Which theorem are you using?
Answer: Using the Intermediate Value Theorem we may conclude that f must have a root on the interval (-10, 1). (Of course, this is only one of infinitely many correct answers.)
5. (12 pts) Find an equation of the normal line to the curve

$$
y=g(x)=\frac{x^{2}-1}{x^{2}+1} \text { at } \mathrm{x}=1
$$

You may use shortcuts.
Answer: $\boldsymbol{y}=1-\boldsymbol{x}$.
6. (12 pts) The graph of a function g is shown below. For each of the following, decide if the limit exists. If it does, find the limit. If it does not, decide if the "limit" is $\infty,-\infty$, or neither. No justification is necessary for full credit, but show your work for purposes of partial credit.

Answers:
(a) $\lim _{x \rightarrow 0^{+}} g(x)=2$
(b) $\lim _{x \rightarrow 1^{-}} g(x)=2$
(c) $\lim _{x \rightarrow 1^{+}} g(x)=1$
(d) $\lim _{x \rightarrow 1} g(x)=$ does not exist; neither $\pm \infty$.
(e) $\lim _{x \rightarrow 2} g(x)=0$
(f) $\lim _{x \rightarrow 0^{+}} g(x)=$ [redundant]
(g) $\lim _{x \rightarrow 3^{-}} g(x)=1$
(h) $\lim _{x \rightarrow 3^{+}} g(x)=-1$
(i) $\lim _{x \rightarrow 3} g(x)=$ does not exist; neither $\pm \infty$.
(j) $\lim _{x \rightarrow 4^{+}} g(x)=\infty$
(k) $\lim _{x \rightarrow 4^{-}} g(x)=-\infty$
(l) $\lim _{x \rightarrow 4} g(x)=$ does not exist; neither $\pm \infty$.
(m) $\lim _{x \rightarrow 5^{-}} g(x)=1$
7. Suppose that $\mathrm{f}(\mathrm{x})$ is a function that is continuous on the interval $[-2,2]$. The graph of $f^{\prime}(x)$ on the interval $[-2,2]$ is given below.

(a) (6 pts) Let $\mathrm{y}=\mathrm{L}(\mathrm{x})$ be the local linearization of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=-1$. Using the fact that $\mathrm{f}(-1)=-4$, write a formula for $\mathrm{y}=\mathrm{L}(\mathrm{x})$.

Answer: $\quad L(x)=-4+3(x+1)$
(b) (6 pts) Use your formula for $\mathrm{L}(\mathrm{x})$ to approximate $\mathrm{f}(-0.5)$.

Answer: -5.5
8. Suppose that f and g are differentiable functions satisfying:

$$
\mathrm{f}(3)=-2, \mathrm{~g}(3)=-4, \mathrm{f}^{\prime}(3)=3, \text { and } \mathrm{g}^{\prime}(3)=-1
$$

(a) (6 pts) Let $\mathrm{H}(\mathrm{x})=(\mathrm{f}(\mathrm{x})+2 \mathrm{~g}(\mathrm{x})+1)(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})-4)$. Compute $\mathrm{H}^{\prime}(3)$ (Hint: Use short cuts here.)

Answer: -38
(b) (6 pts) Let $M(x)=\frac{2 f(x)+3 g(x)}{2-3 g(x)}$. Compute M ${ }^{\prime}(3)$

Answer: $\frac{45}{98}$
9. For each of the following, find any and all critical points. Then, using the first derivative test, classify them (local max, local min, neither).
(a) (6 pts) $\quad \mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}+1$

Answer: f achieves a local maximum at $x=-1$ and a local minimum at $x=1$.
(b) (6 pts) $\quad \mathrm{y}=\mathrm{g}(\mathrm{x})=3 \mathrm{x}^{4}-16 \mathrm{x}^{3}+18 \mathrm{x}^{2}+1$

Answer: g achieves a local maximum at $x=4$ and local minima at $x=1$ and $x=6$.
10. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a differentiable function with derivative

$$
f^{\prime}(x)=\frac{e^{x}(x-1)(x-2)^{2}(x-4)^{3}(x-5)^{4}(x-6)^{5}}{1+x^{4}}
$$

(a) (4 pts) Find any and all critical points.

Answer: $x=1,2,4,5$, and 6
(b) (8 pts) Classify each critical point (local max, local min, neither).

Answer: Using the first derivative test, we find that $x=4$ is a local maximum; $x=1$ and $x=6$ are both local minima.
11. (3 pts each) Compute each of the following limits. Justify your reasoning.
(a) $\lim _{x \rightarrow \infty} \frac{\left(4 x^{3}+11\right)^{2}(3 x-91)^{3}}{\left(2 x^{2}+5\right)^{4}(2 x+2017)}$

Answer: 27/2
(b) $\lim _{x \rightarrow 3} \frac{\frac{1}{x^{2}}-\frac{1}{9}}{x-3}$

Answer:-2/27
(c) $\lim _{x \rightarrow \infty} \frac{\sin 7 x}{x}$

Answer: 0

$$
\text { (d) } \lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}
$$

Answer: 1/2
12. (3 pts each) For each of the following functions, determine the type of discontinuity at the given point.

If it is a removable discontinuity, find a continuous extension of the function.
(a) $y=\frac{x^{3}-x^{2}-2 x}{(x-2)(x+5)}$ at $\mathrm{x}=2$

Answer: This is a removable discontinuity. The continuous extension requires that y be defined as $\frac{6}{7}$ when x $=2$.
(b) $\quad y=\frac{x^{3}-x^{2}-2 x}{(x-2)(x+5)}$ at $\mathrm{x}=-5$

Answer: an infinite discontinuity.
(c) $y=\cos \frac{3}{x}$ at $x=0$

Answer: essential discontinuity.
(d) $y=\frac{|x|}{x}$ at $x=0$

Answer: jump discontinuity

