Instructions: Answer any 10 of the following 12 questions. You may solve more than 10 to obtain extra
credit. ©)

1. Albertine orders a large cup of coffee at Metropolis on Granville. Let $\mathrm{F}(\mathrm{t})$ be the temperature in degrees Fahrenheit of her coffee t minutes after the coffee is placed on her tray.
(a) Explain the meaning of the statement: $\mathrm{F}(9)=167$. (Use complete sentences. Avoid any mathematical terms!)

(b) Explain the meaning of the statement: $\quad F^{-1}(99)=17.5$
(c) Give the practical interpretation of the statement: $\mathrm{F}^{\prime}(9)=-1.10$. (Use complete sentences. Do not use the words "derivative" or "rate" or any other mathematical term in your explanation.)
(d) What are the units of $\mathrm{F}^{\prime}(9)$?
(e) Using the information given in parts (a) and (c), estimate the temperature of Albertine's coffee seven minutes after she has been handed the coffee.
(f) [EXTRA CREDIT] Explain the meaning of the statement:

$$
\left(F^{-1}\right)^{\prime}(99)=-1
$$

2. For each of the following three sets of axes, exactly one of the following statements (a) - (e) is true.

You may use a letter more than once. In the space provided next to each figure, enter the letter of the true statement for that figure. For each graph, note that the x and y scales are not the same.
(a) h is the derivative of f, and f is the derivative of g.
(b) g is the derivative of f, and f is the derivative of h.
(c) g is the derivative of h, and h is the derivative of f.
(d) h is the derivative of g, and g is the derivative of f.
(e) None of (a)-(d) are possible.

True statement \qquad

True statement \qquad
3. Using the limit definition of the derivative, write an explicit expression for the derivative of the function $\mathrm{g}(\mathrm{x})=(\cos \mathrm{x})^{\mathrm{x}}$ at $\mathrm{x}=3$. Do not try to calculate this derivative.
4. (a) Find $\lim _{x \rightarrow \infty} f(x)$ if, for all $x>5$,

$$
\frac{4 x-1}{x}<f(x)<\frac{4 x^{2}+3 x}{x^{2}}
$$

Explain!
Which theorem are you using?
(b) Show that $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+5 \mathrm{e}^{\mathrm{x}}+1$ has at least one real root. Explain!

Which theorem are you using?
5. Find an equation of the normal line to the curve

$$
y=g(x)=\frac{x^{2}-1}{x^{2}+1} \text { at } \mathrm{x}=1 .
$$

You may use short cuts.
6. The graph of a function g is shown below. For each of the following, decide if the limit exists. If it does, find the limit. If it does not, decide also if the "limit" is $\infty,-\infty$, or neither. No justification is necessary for full credit, but show your work for purposes of partial credit.

(a) $\lim _{x \rightarrow 0^{+}} g(x)=$
(b) $\lim _{x \rightarrow 1^{-}} g(x)=$
(c) $\lim _{x \rightarrow 1^{+}} g(x)=$
(d) $\lim _{x \rightarrow 1} g(x)=$
(e) $\lim _{x \rightarrow 2} g(x)=$
(f) $\lim _{x \rightarrow 0^{+}} g(x)=$
(g) $\lim _{x \rightarrow 3^{-}} g(x)=$
(h) $\lim _{x \rightarrow 3^{+}} g(x)=$
(i) $\lim _{x \rightarrow 3} g(x)=$
(j) $\lim _{x \rightarrow 4^{+}} g(x)=$
(k) $\lim _{x \rightarrow 4^{-}} g(x)=$
(l) $\lim _{x \rightarrow 4} g(x)=$
(m) $\lim _{x \rightarrow 5^{-}} g(x)=$
7. Suppose that $\mathrm{f}(\mathrm{x})$ is a functon that is continuous on the interval $[-2,2]$. The graph of $f^{\prime}(x)$ on the interval $[-2,2]$ is given below.

(a) Let $y=L(x)$ be the local linerariztion of $f(x)$ at $x=-1$. Using the fact that $f(-1)=-4$, write a formula for $\mathrm{y}=\mathrm{L}(\mathrm{x})$.
(b) Use your formula for $\mathrm{L}(\mathrm{x})$ to approximate $\mathrm{f}(-0.5)$.
8. Suppose that f and g are differentiable functions satisfying:

$$
f(3)=-2, g(3)=-4, f^{\prime}(3)=3 \text {, and } g^{\prime}(3)=-1 \text {. }
$$

(a) Let $\mathrm{H}(\mathrm{x})=(\mathrm{f}(\mathrm{x})+2 \mathrm{~g}(\mathrm{x})+1)(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})-4)$. Compute $\mathrm{H}^{\prime}(3) \quad$ (Hint: Use short cuts here.)
(b) Let $M(x)=\frac{2 f(x)+3 g(x)}{2-3 g(x)}$. Compute $\mathrm{M}^{\prime}(3)$
9. For each of the following, find any and all critical points. Then, using the first derivative test, classify them (local max, local min, neither).
(a) $y=x^{3}-3 x+1$
(b) $y=3 x^{4}-16 x^{3}+18 x^{2}+1$
10. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a differentiable function with derivative

$$
f^{\prime}(x)=\frac{e^{x}(x-1)(x-2)^{2}(x-4)^{3}(x-5)^{4}(x-6)^{5}}{1+x^{4}}
$$

(a) Find any and all critical points.
(b) Classify each critical point (local max, local min, neither).
11. Compute each of the following limits. Justify your reasoning.
(a) $\lim _{x \rightarrow \infty} \frac{\left(4 x^{3}+11\right)^{2}(3 x-91)^{3}}{\left(2 x^{2}+5\right)^{4}(2 x+2017)}$
(b) $\lim _{x \rightarrow 3} \frac{\frac{1}{x^{2}}-\frac{1}{9}}{x-3}$
(c) $\lim _{x \rightarrow \infty} \frac{\sin 7 x}{x}$
(d) $\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$
12. For each of the following functions, determine the type of discontinuity at the given point. If it is a removable discontinuity, find continuous extension of the function.
(a) $y=\frac{x^{3}-x^{2}-2 x}{(x-2)(x+5)}$ at $\mathrm{x}=2$
(b) $\quad y=\frac{x^{3}-x^{2}-2 x}{(x-2)(x+5)}$ at $\mathrm{x}=-5$
(c) $y=\cos \frac{3}{x}$ at $x=0$
(d) $y=\frac{|x|}{x}$ at $x=0$

It is a hypothesis that the sun will rise tomorrow: and this means that we do not know whether it will rise.

- Ludwig Wittgenstein

DERIVATIVE RULES

$$
\begin{array}{lll}
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} & \frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x}(\cos x)=-\sin x \\
\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x} & \frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) & \frac{d}{d x}(\sec x)=\sec x \tan x & \frac{d}{d x}(\csc x)=-\csc x \cot x \\
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} & \frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}} \\
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) & \frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{x \sqrt{x^{2}-1}} &
\end{array}
$$

