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MATH 161             Solutions:  QUIZ III             
1. Consider the functions f(x) and g(x) given by the formula and graph below.
[image: ] 
(a)   Circle the correct answer(s) in each of the following questions. 
i) At which of the following values of x is the function g(x) not continuous?[image: ]
ii) At which of the following values of x is the function f(x) + g(x) continuous?
[image: ]

Note that g(x) is linear on each of the intervals (−4, −2), (1, 2) and (2, 3). All your answers below should be exact. If any of the quantities do not exist, write DNE. 

(b)    Find  

Solution:   



(c)   
Answer:  8

(d)      
Answer:  1

(e)    For which value(s) of p does 
 Answer:  -3.5, 3

(f)   Find 

Solution:   Let t = -x.  Then as 
 2


2. Using the IVT explain why the function f(x) = x + 3 – 2 sin x must have at least one real root.

Solution:  Note that f(0) = 3 > 0 and = -  + 3 – 2 sin  =  3 – 
Also note that f  is continuous on the interval [, ] since f is a sum of continuous functions.  Since f) < 0 < f(), the IVT guarantees the existence of a root of the equation G(x) = 0 in the interval [, ].  


3. Using the Squeeze Theorem, show that the function


has a limit as x → 0 and find the value of this limit.   (You need not state the general theorem; only show how it can be applied here.)

Solution:  First, a brief review of the Squeeze theorem.
Theorem:  Let v(x), z(x), u(x) be functions defined on an interval (a, b) except possibly at the point p, where p(a, b)
In addition, assume that 


Then  


[image: Graphical intuition of squeeze theorem]
Returning to the original question:



Now, as x → 0, 3x4 → 0 and  -3x4 → 0.

[bookmark: _GoBack]Thus, invoking the Squeeze Theorem, we obtain:



4. Compute each of the following limits.  As usual, show your work
(a) Find 


Solution:  Since  we can use the limit law for quotients:


(b) Find

   Solution:  




(c) Find

Solution:  





(d) Find


 Solution:  Since   it follows that

    for all x>0.
Noting that  we may apply the Squeeze Theorem to conclude:


5.  Consider the rational function F defined by   
(a)   Where is F undefined?   (Hint:  Your answer should consist of two x values.)

Solution:   Begin by factoring:  

Now F is undefined when its denominator is 0:  

This occurs at x = -3/2 and at x = 4.

(b)   Let p denote the smaller of the two numbers found in part (a).  Is it possible to extend F to a function that is continuous at  x = p?  If not, explain; if so, how should F(p) be defined?

Solution:   Clearly p = -3/2.
Since  , it follows that, when 
 

So, since this limit exists, the function has a continuous extension at x = -3/2.
In other words, x = -3/2 is a removable discontinuity.
Furthermore, we should assign the value -15/22  to F(-3/2).

(c)   Let q denote the larger of the two numbers found in part (a).  Is it possible to extend F to a function that is continuous at  x = q?  If not, explain; if so, how should F(q) be defined?

Solution:   Clearly q = 4.
Now 
Thus we have an infinite discontinuity, implying there is no continuous extension of F at x = 4.

6. Give the type of discontinuity for each function below at the given point.

(a)  At x = -1				answer:  infinite discontinuity
 [image: ]

(b)  At x = 2 				answer:  removable discontinuity
[image: ]

(c) At x = 2 				answer: jump discontinuity
[image: ]






(d)  At x = 1 				answer:  essential discontinuity
 [image: ]












It is a hypothesis that the sun will rise tomorrow: and this means that we do not know whether it will rise. 
- Ludwig Wittgenstein

[image: Résultats de recherche d'images pour « we are asleep our life is a dream »]
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“We are asleep.
Our life is a dream.
But we wake up
sometimes,
just enough
to know that
we are dreaming.”
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