MATH 161

1. Consider the functions $f(x)$ and $g(x)$ given by the formula and graph below.

(a) Circle the correct answer(s) in each of the following questions.
i) At which of the following values of x is the function $\mathrm{g}(\mathrm{x})$ not continuous?

$$
\begin{array}{lllll}
x=-3 & x=-1 & x=0 & x=2 & x=3.5
\end{array}
$$

ii) At which of the following values of x is the function $\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$ continuous?

$$
\begin{array}{llll}
x=-2 & x=-1 & x=0 & x=1
\end{array} \quad x=2
$$

Note that $\mathrm{g}(\mathrm{x})$ is linear on each of the intervals $(-4,-2),(1,2)$ and $(2,3)$. All your answers below should be exact. If any of the quantities do not exist, write DNE.
(b) Find $\lim _{x \rightarrow 2}(2 f(x)+g(x))$

Solution: $\lim _{x \rightarrow 2}(2 f(x)+g(x))=2 \lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2} g(x)=$

$$
2(9)+(-2.5)=15.5
$$

(c) Find $\lim _{x \rightarrow \infty} \frac{f(2 x)}{x^{3}}$

Answer: 8
(d) Find $\lim _{x \rightarrow \infty} g\left(x^{2} e^{-x}+3\right)$

Answer: 1
(e) For which value(s) of p does $\lim _{x \rightarrow p+} g(x)=1$

Answer: -3.5, 3
(f) Find $\lim _{x \rightarrow-1^{-}} f(-x)$

Solution: Let $\mathrm{t}=-\mathrm{x}$. Then as $x \rightarrow-1^{-}, t \rightarrow 1^{+}$.
Thus $\lim _{x \rightarrow-1^{-}} f(-x)=\lim _{t \rightarrow 1^{+}} f(t)=\mathbf{2}$
2. Using the IVT explain why the function $\mathrm{f}(\mathrm{x})=\mathrm{x}+3-2 \sin \mathrm{x}$ must have at least one real root.

Solution: Note that $f(0)=3>0$ and $f(-\pi)=-\pi+3-2 \sin (-\pi)=3-\pi<0$.
Also note that f is continuous on the interval $[-\pi$, O] since f is a sum of continuous functions. Since $f(-\pi)<0<f(0)$, the IVT guarantees the existence of a root of the equation $G(x)=0$ in the interval $[-\pi, 0]$.
3. Using the Squeeze Theorem, show that the function

$$
f(x)=3 x^{4} \cos \left(\frac{x+1732}{x^{3}}\right)
$$

has a limit as $\mathrm{x} \rightarrow 0$ and find the value of this limit. (You need not state the general theorem; only show how it can be applied here.)

Solution: First, a brief review of the Squeeze theorem.
Theorem: Let $v(x), z(x), u(x)$ be functions defined on an interval (a, b) except possibly at the point p, where $p \in(a, b)$
In addition, assume that

$$
\lim _{x \rightarrow p} v(x)=L \text { exists and } \lim _{x \rightarrow p} u(x)=L \text { exists }
$$

Then

$$
\lim _{x \rightarrow p} z(x)=\text { exists and, furthermore, } \lim _{x \rightarrow p} z(x)=L
$$

Returning to the original question:

$$
-1 \leq \cos \left(\frac{x}{x^{3}+1732}\right) \leq 1 \Rightarrow
$$

$-3 x^{4} \leq 3 x^{4} \cos \left(\frac{x}{x^{3}+1732}\right) \leq 3 x^{4}$
Now, as $x \rightarrow 0,3 x^{4} \rightarrow 0$ and $-3 x^{4} \rightarrow 0$.
Thus, invoking the Squeeze Theorem, we obtain:

$$
\lim _{x \rightarrow 0} 3 x^{4} \cos \frac{x+1732}{x^{3}}=0
$$

4. Compute each of the following limits. As usual, show your work
(a) Find $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{x}$

Solution: Since $\lim _{x \rightarrow \pi / 2} x \neq 0$ we can use the limit law for quotients:

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{x}=\frac{\lim _{x \rightarrow \pi / 2} \sin x}{\lim _{x \rightarrow \pi / 2} x}=\frac{1}{\left(\frac{\pi}{2}\right)}=\frac{2}{\pi}
$$

(b) Find $\lim _{x \rightarrow 0} \sqrt{\frac{\sin 9 x}{x}}$

Solution:

$$
\lim _{x \rightarrow 0} \sqrt{\frac{\sin 9 x}{x}}=\sqrt{\lim _{x \rightarrow 0} \frac{\sin 9 x}{x}}=\sqrt{9}=3
$$

(c) Find $\lim _{x \rightarrow 0} \frac{\tan (21 x)}{x \cos (3 x)}$

Solution:

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\tan (21 x)}{x \cos (3 x)}=\lim _{x \rightarrow 0} \frac{\sin (21 x)}{x \cos (3 x) \cos 21 x}= \\
\lim _{x \rightarrow 0} \frac{1}{\cos (3 x) \cos 21 x} \lim _{x \rightarrow 0} \frac{\sin (21 x)}{x}= \\
\text { (1)(21) }=21
\end{gathered}
$$

(d) Find $\lim _{x \rightarrow \infty} \frac{\sin (7 x+3)}{7 x+3}$

Solution: Since $-1 \leq \sin (7 x+3) \leq 1$ it follows that

$$
\frac{-1}{7 x+3} \leq \frac{\sin (7 x+3)}{7 x+3} \leq \frac{1}{7 x+3} \text { for all } x>0
$$

Noting that $\lim _{x \rightarrow \infty} \frac{1}{7 x+3}=0$, we may apply the Squeeze Theorem to conclude:

$$
\lim _{x \rightarrow \infty} \frac{\sin (7 x+3)}{7 x+3}=0
$$

5. Consider the rational function F defined by $F(x)=\frac{2 x^{3}+x^{2}-3 x}{2 x^{2}-5 x-12}$
(a) Where is F undefined? (Hint: Your answer should consist of two x values.)

Solution: Begin by factoring: $F(x)=\frac{x(2 x+3)(x-1)}{(2 x+3)(x-4)}$
Now F is undefined when its denominator is 0 :
This occurs at $x=-3 / 2$ and at $x=4$.
(b) Let p denote the smaller of the two numbers found in part (a). Is it possible to extend F to a function that is continuous at $\mathrm{x}=\mathrm{p}$? If not, explain; if so, how should $\mathrm{F}(\mathrm{p})$ be defined?

Solution: Clearly $p=-3 / 2$.
Since $F(x)=\frac{x(2 x+3)(x-1)}{(2 x+3)(x-4)}$, it follows that, when $x \neq-\frac{3}{2}$,
$F(x)=\frac{x(x-1)}{x-4} \rightarrow \frac{-\frac{3}{2}\left(-\frac{3}{2}-1\right)}{-\frac{3}{2}-4}=-\frac{15}{22}$ as $x \rightarrow-\frac{3}{2}$.

So, since this limit exists, the function has a continuous extension at $\boldsymbol{x}=\mathbf{- 3 / 2}$.
In other words, $x=-3 / 2$ is a removable discontinuity.
Furthermore, we should assign the value -15/22 to F(-3/2).
(c) Let q denote the larger of the two numbers found in part (a). Is it possible to extend F to a function that is continuous at $\mathrm{x}=\mathrm{q}$? If not, explain; if so, how should $\mathrm{F}(\mathrm{q})$ be defined?

Solution: Clearly $q=4$.
Now as $x \rightarrow 4$,
the numerator of F approaches 12 while the denminator of F approaches 0 .

Thus we have an infinite discontinuity, implying there is no continuous extension of F at $x=4$.
6. Give the type of discontinuity for each function below at the given point.
(a) At $x=-1$
answer: infinite discontinuity

(b) At $\mathrm{x}=2$

(c) At $x=2$

answer: removable discontinuity
answer: jump discontinuity
(d) At $x=1$
answer: essential discontinuity

It is a hypothesis that the sun will rise tomorrow: and this means that we do not know whether it will rise.

- Ludwig Wittgenstein

