1. [4 pts]

Which of the following comparisons of $f(1), f^{\prime}(1)$, and $f^{\prime \prime}(1)$ is true?

Choose 1 answer:

(A) $f(1)<f^{\prime}(1)<f^{\prime \prime}(1)$
(B) $f(1)<f^{\prime \prime}(1)<f^{\prime}(1)$
(C) $f^{\prime}(1)<f(1)<f^{\prime \prime}(1)$
(D) $f^{\prime \prime}(1)<f(1)<f^{\prime}(1)$

Solution: D is the correct answer. Note that $f^{\prime \prime}(1)<0$
Since f is concave down over an interval that includes $x=1$.
Next, $f(1)=0$ which we can see from the graph.
Finally $f^{\prime}(1)>0$ since f is increasing on an interval containing $x=1$.
2. Given a function $y=f(x)$ for which $\frac{d y}{d x}=x^{3}(x-4)$
(a) [2 pts] Find the critical points of $f(x)$?

Solution: We are given that $f^{\prime}(x)=x^{3}(x-4)$. Setting $f^{\prime}(x)=0$, we find $x=0, x=4$ are critical points.
(b) [2 pts] Determine the interval(s) upon which $f(x)$ is rising.

Solution: $f(x)$ is rising when $f^{\prime}(x)>0$. Now the sign analyisis of $f^{\prime}(x)$ has two transition points, $x=0$ and $x=4$.
We see that $f^{\prime}(x)>0$ when $x<0$ or when $x>4$.
(c) [3 pts] Determine the interval(s) upon which $f(x)$ is concave up.

Solution: Using the product rule, $f^{\prime \prime}(x)=x^{3} \frac{d}{d x}(x-4)+(x-4) \frac{d}{d x} x^{3}=x^{3}+(x-4) 3 x^{2}=$ $x^{2}(x+3(x-4))=x^{2}(4 x-12)=4 x^{2}(x-3)$.

In performing a sign analysis on $f^{\prime \prime}(x)$ we have only one transition point, viz. $x=3$.
Hence f is concave up on $(3, \infty)$.
3. Find an anti-derivative for each of the following functions. The method of judicious guessing is highly recommended. Show your work.
(a) $[2 p t s] \mathrm{e}^{\mathrm{x}}-3 \mathrm{x}^{8}$

Answer: $\quad e^{x}-\frac{1}{3} x^{9}$
(b) $[2 p t s] \sec ^{2} \mathrm{x}+5 \sec \mathrm{x} \tan \mathrm{x}+\pi^{9}$

Answer: $\tan x+5 \sec x+\pi^{9} x$
Notice that π^{9} is a constant!
(c) $[2$ pts $] 1+3 \mathrm{x}^{2}-18 \mathrm{x}^{5}$

Answer: $\quad x+x^{3}-3 x^{6}$
(d) $[2 p t s] \quad 1+3 \mathrm{e}^{\mathrm{x}}+4 \cos \mathrm{x}$

Answer: $\quad x+3 e^{x}+4 \sin x$
(e) $[3 \mathrm{pts}]\left(3+x^{3}\right)^{2}$

Solution: Using algebra: $\quad\left(3+x^{3}\right)^{2}=9+6 x^{3}+x^{6}$. Hence an antiderivative of $\left(3+x^{3}\right)^{2}$ is

$$
9 x+\frac{3}{2} x^{3}+\frac{1}{7} x^{7}
$$

(f) [3 pts] $\frac{1+x+x^{3}}{x^{3}}$

Solution: Using algebra: $\frac{1+x+x^{3}}{x^{3}}=x^{-3}+x^{-2}+1$. Hence an antiderivative of $\frac{1+x+x^{3}}{x^{3}}$ is

$$
-\frac{1}{2} x^{-2}-x^{-1}+x
$$

4. [7 pts] (a) Using an appropriate function and an appropriate point, estimate $\frac{1}{\sqrt{8.994}}$. Sketch! Solution: Let $f(x)=\frac{1}{\sqrt{x}}=x^{-\frac{1}{2}}$ and let the point be $x=9$.

Since $f^{\prime(x)}=-\frac{1}{2} x^{-\frac{3}{2}}, \quad f^{\prime}(9)=-\frac{1}{54}$
So the linearization of $f(x)$ at $x=9$ is given by $L(x)=\frac{1}{3}-\frac{1}{54}(x-9)$.
Thus our approximation of $\frac{1}{\sqrt{8.994}}$ is $L(8.994)=\frac{1}{3}-\frac{1}{54}(8.994-9)=\frac{1}{3}-\frac{1}{54}(-0.006)=\frac{1}{3}+\frac{0.006}{54} \approx$ 0.33344444444 .
[3 pts] (b) Is this an over or an underestimate? Why? (No credit for calculator answers.)

Solution: This is an underestimate since the tangent line to $y=f(x)$ at $x=9$ lies below the curve. Cf. sketch above. Equivalently $f(x)$ is concave up at $x=9$ because $f^{\prime \prime(9)}>0$.

DERIVATIVE RULES

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\
& \frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x} \\
& \frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) \\
& \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} \\
& \frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& \frac{d}{d x}(\ln x)=\frac{1}{x}
\end{aligned}
$$

$$
\frac{d}{d x}(\sin x)=\cos x \quad \frac{d}{d x}(\cos x)=-\sin x
$$

$$
\frac{d}{d x}(\tan x)=\sec ^{2} x \quad \frac{d}{d x}(\cot x)=-\csc ^{2} x
$$

$$
\frac{d}{d x}(\sec x)=\sec x \tan x \quad \frac{d}{d x}(\csc x)=-\csc x \cot x
$$

$$
\frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}}
$$

$$
\frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{x \sqrt{x^{2}-1}}
$$

$$
\frac{d}{d x}(\sinh x)=\cosh x \quad \frac{d}{d x}(\cosh x)=\sinh x
$$

