1. [14 pts] Let $\mathrm{g}(\mathrm{x})=3 \mathrm{x}^{5}-5 \mathrm{x}^{3}$ be defined on the real line.
(a) Find all the critical points of g.

Solution: Since $g^{\prime}(x)=15 x^{4}-15 x^{2}=15 x^{2}(x+1)(x-1)$, the critical points of g are $\mathrm{x}=0,1,-1$
(b) Where is g rising? (Give the appropriate intervals.)

Solution: Performing a sign analysis on $g^{\prime}(x)$ we discover that g rises on $(-\infty,-1)$ and on $(1, \infty)$.
(c) Find and classify all local extrema. Justify your answer. (Do not say "because the calculator tells me.")

Solution: Using the first-derivative test, we discover that g has a local maximum at $\mathrm{x}=-1$ and a local minimum at $\mathrm{x}=1$.
(d) Does g achieve a global max or global min? Explain.

Solution: Neither a global max nor a global min. In the long run, $\mathrm{g}(\mathrm{x})$ behaves as x^{5} which is unbounded above as well as unbounded below.
(e) Where is g concave up? (Give the appropriate intervals.) Find any and all points of inflection.

Solution: $g^{\prime \prime}(x)=\frac{d}{d x}\left(15 x^{4}-15 x^{2}\right)=60 x^{3}-30 x=30 x\left(2 x^{2}-1\right)=60 x\left(x+\sqrt{\frac{1}{2}}\right)\left(x-\sqrt{\frac{1}{2}}\right)$.
Performing a sign analysis on $g^{\prime \prime}$, we find three points of inflection: $\quad x=0, x= \pm \frac{\sqrt{2}}{2}$
Moreover, g is concave up on $\left(-\frac{\sqrt{2}}{2}, 0\right)$ and $\left(\frac{\sqrt{2}}{2}, \infty\right)$.
(f) Sketch a graph of $y=g(x)$. Label all local and global extrema and all inflection points. Show regions of increase and decrease. Show regions where the function is concave up and concave down.

2. [8 pts] Albertine is designing a rectangular poster to contain $50 \mathrm{in}^{2}$ of printing with a 4-inch margin at the top and bottom and a 2 -inch margin at each side. Which overall dimensions minimize the amount of poster board used?

Solution: Let $\mathrm{x}=$ width of the printed region (in inches) and let $\mathrm{y}=$ length of printed region (in inches).

Hence the outer width is $\mathrm{x}+4$ inches and the outer length is $\mathrm{y}+8$ inches.

We are asked to minimize $A=(x+4)(y+8)$.
We area given that $x y=50$, from which we see that $y=\frac{50}{x}$.

Thus $A=(x+4)\left(\frac{50}{x}+8\right)=82+8 x+\frac{200}{x}$.
The appropriate domain of A is $(0, \infty)$.
Next

$$
\frac{d A}{d x}=8-\frac{200}{x^{2}}=8\left(1-\frac{25}{x^{2}}\right)=\frac{8(x+5)(x-5)}{x^{2}}
$$

So the critical points are $x= \pm 5$. Of course, we reject -5 , so the unique critical point in our domain occurs at $x=5$.
And here $y=\frac{50}{x}=10$.
The first derivative test verifies that this is a local minimum, and hence, in our domain, a global minimum.
Hence the overall dimensions are:

9 inches by 18 inches.

3. [8 pts] Build a rectangular pen with three parallel partitions using 500 feet of fencing. What dimensions will maximize the

total area of the pen?
Solution: Let $\mathrm{x}=$ length (in ft$)$ of the pen and let $\mathrm{y}=$ width (in ft$)$.
Then the total amount of fencing is $500=2 \mathrm{x}+5 \mathrm{y}$.
We wish to maximize the area of the pen: $\mathrm{A}=\mathrm{xy}$.
Now $y=\frac{500-2 x}{5}$. The constraints on x are: $0<x<250$.

So $A=x y=\frac{x(500-2 x)}{5}$. Next, $\frac{d A}{d x}=\frac{1}{5}(500-4 x)=\frac{4}{5}(125-x)$.
This concave-down parabola has a maximum at $\mathbf{x}=\mathbf{1 2 5}$ feet. And at $\mathbf{x}=\mathbf{1 2 5}, \mathbf{y}=\mathbf{5 0}$ feet.

4. [8 pts] A container in the shape of a right circular cylinder with no top has surface area $3 \pi \mathrm{ft}^{2}$. What height h and base radius r will maximize the volume of the cylinder?

Solution: We are given that $3 \pi=2 \pi r h+\pi r^{2}$, or equivalently, $3=2 r h+r^{2}$, from which $h=\frac{3-r^{2}}{2 r}$.
The constraints on r are $0<r<\sqrt{3}$
We are asked to maximize $V(r)=\pi r^{2} h=\pi r^{2}\left(\frac{3-r^{2}}{2 r}\right)=\frac{\pi}{2} r\left(3-r^{2}\right)$ subject to the above constraints.
Now $\frac{d V}{d r}=\frac{\pi}{2}\left(3-3 r^{2}\right)=\frac{3 \pi}{2}(1-r)(1+r)$. Now the unique critical point in our domain is $r=1$.
We can easily confirm, using the first derivative test, that $\mathrm{r}=1$ is a global max in our domain. Now, when $\mathrm{r}=1, \mathrm{~h}=1$.
So the volume of the cylinder is maximized when $\mathbf{r}=\mathbf{1} \mathbf{f t}$ and $\mathbf{h}=\mathbf{1} \mathbf{f t}$.

EXTRA CREDIT [University of Michigan problem]

The cable of a suspension bridge with two supports $2 L$ meters apart hangs H meters above the ground. The height H is given in terms of the distance in meters from the first support x (in meters) by the function

$$
H(x)=e^{x-L}+e^{L-x}+H_{0}-2
$$

where H_{0} and L are positive constants. Notice that x ranges from 0 (the first support) to $2 L$ (the second support).
(a) Find (but do not classify) the critical points for the function $H(x)$.

Solution: To find the critical points, we first take the derivative of $H(x)$:

$$
H^{\prime}(x)=e^{x-L}-e^{L-x} .
$$

To find the critical points, we set $H^{\prime}(x)=0$:

$$
H^{\prime}(x)=0 \Rightarrow e^{x-L}-e^{L-x}=0 \Rightarrow e^{x-L}=e^{L-x}
$$

apply \ln to both sides $\quad x-L=L-x$
$2 x=2 L \Rightarrow x=L$
So, $H(x)$ has only one critical point at $x=L$.
(b) Find the x and y coordinates of all global maxima and minima for the function $H(x)$. Justify your answers!

Solution: Since the values of x lie in the closed interval $[0,2 L]$, to find all global maxima and minima, we need to compare the values of H at the endpoints and at any critical points. From part (a), we know the only critical point is at $x=L$, we plug $x=0, L$, and $2 L$ into $H(x)$:
$H(0)=e^{-L}+e^{L}+H_{0}-2, H(L)=1+1+H_{0}-2=H_{0}$, and $H(2 L)=e^{L}+e^{-L}+H_{0}-2$.
To identify which of these should be larger, we notice that $e^{x}+e^{-x} \geq 2$ for all x. Therefore, $H(2 L)=H(0)>H(L)$. Then, the function $H(x)$ has global maxima at $\left(0, e^{-L}+e^{L}+H_{0}-2\right)$ and $\left(2 L, e^{-L}+e^{L}+H_{0}-2\right)$ and a global minimum at $\left(L, H_{0}\right)$.

