Math 161 Written HW B

Due: 31 October 2018

I Albertine is trying to find the following limit:

$$
\lim _{x \rightarrow 2} \frac{x^{6}+x^{5}-5 x^{4}-2 x^{3}+4 x^{2}-8 x}{x^{2}-4}
$$

Please help her.

II Suppose that f and g are differentiable functions satisfying:

$$
f(3)=-1, g(3)=-4, f^{\prime}(3)=5, \text { and } g^{\prime}(3)=-1 .
$$

(a) Let $\mathrm{H}(\mathrm{x})=(\mathrm{f}(\mathrm{x})+2 \mathrm{~g}(\mathrm{x})+1)(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})-4)$.

Compute $\mathrm{H}^{\prime}(3)$ (Hint: Use shortcuts here.)
(b) Let $M(x)=\frac{2 f(x)+3 g(x)}{2-3 g(x)}$

Compute $M^{\prime}(3)$

III Albertine exclaims that the following problem is quite easy. Do you agree with her? Justify your answer!
Let f be differentiable at $\mathrm{x}=\mathrm{a}$, where $\mathrm{a}>0$. Evaluate the following limit in terms of $f^{\prime}(a)$.

$$
\lim _{n \rightarrow a} \frac{f(x)-f(a)}{\sqrt{x}-\sqrt{a}}
$$

IV Swann finds the following limit problem to be difficult. Please help him.
(Calculator solutions will earn no credit. Nor will using L'Hôpital's rule)

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^{3}}
$$

Hint: Begin by rationalizing the numerator.

The more you know, the less sure you are.

- Voltaire

