MATHEMATICA LAB IV

TAYLOR SERIES

(Due: April 22, 2013)

I Power Series

1. Find the $8^{\text {th }}$ order Maclaurin polynomial of $\tanh (x)$.
2. Find the $7^{\text {th }}$ order Taylor polynomial of e^{x} about $\mathrm{x}=1$.
3. Find the $9^{\text {th }}$ order Maclaurin polynomial of $\ln (1+x)$.
4. Plot the graph of $y=e^{x}$ along with the first four Maclaurin polynomials of e^{x} on the same set of axes.
5. Find the $14^{\text {th }}$ order Maclaurin polynomial of $\exp \left(x^{2}\right)$. Can you see how this polynomial is related to the $7^{\text {th }}$ order Maclaurin polynomial of e^{x} ? Explain.

II Weierstrass' example

Here we examine a function defined by an infinite series (that is not a power series) which is continuous but nowhere differentiable.

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \sin \left(3^{n} x\right)
$$

6. Plot the $n^{\text {th }}$ partial sum of $\mathrm{f}(\mathrm{x})$ for several values of n (for example, $\mathrm{n}=3,5,8$). Why might you believe that $f(x)$ is not differentiable?

III Infinite products

In mathematics, infinite products play an important role, although perhaps not quite as important a role as that of infinite series. Analogous to infinite series, an infinite product is the limit of a sequence of partial products. The capital Greek letter, pi, is used to indicate a product. For example,

$$
\prod_{k=1}^{n} a(k)
$$

denotes the product: $\mathrm{a}(1) \mathrm{a}(2) \mathrm{a}(3) \ldots \mathrm{a}(\mathrm{n})$. If we wish to define an infinite product, we could let $p(n)=a(1) a(2) a(3) \ldots a(n)$ and define the infinite product to equal the limit of $p(n)$ as n increases without bound, if the limit exists. Of course, if the limit does not exist, we say that the infinite product diverges.
7. Examine the infinite products defined by $a(n)=1+1 / n$ and $b(n)=1+1 / n^{2}$. Graph each sequence of partial products. Does either infinite product converge? If so, what is its limit?

Brook Taylor (1685-1731)

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE

