MATH 162

PRACTICE QUIZ 1C

1. Sketch the region in the first quadrant bounded by the x -axis, the y -axis, the line $x=\sqrt{3}$ and the curve $y=\sqrt{x^{2}+1}$. This region is rotated about the y -axis. Using the shell method, write a definite integral that expresses the volume of this solid of revolution. You need not evaluate this integral.
2. The base of a certain solid is the disk $x^{2}+y^{2} \leq 25$ in the $x y$-plane. Each cross-section of the solid cut out by a plane perpendicular to the x -axis is an isosceles right triangle with its hypotenuse on the base of the solid. Express the volume of the solid as a definite integral. Do not evaluate.
3. Consider the region in the xy -plane bounded by the parabola $\mathrm{y}=\mathrm{x}^{2}$ and the line $\mathrm{y}=36$. Revolve the region about the line $\mathrm{x}=11$. Using the washer method express the volume as a definite integral. Do not evaluate. Be certain to sketch the region.

Extra Credit: A solid is generated by revolving about the x -axis the region bounded by the graph of the positive continuous function $y=f(x)$, the x-axis, and the fixed line $x=a$ and the variable line $\mathrm{x}=\mathrm{b}$ where $\mathrm{b}>\mathrm{a}$.

Its volume, for all b, is $b^{2}-\mathrm{ab}$. Find the function $\mathrm{f}(\mathrm{x})$.

