MATH 162

1. For each of the following improper integrals, determine convergence or divergence. Justify your answers!
(a) $\quad \int_{0+}^{\infty} \frac{1+x}{x^{3}+\sqrt{x}} d x$
(b)

$$
\int_{0}^{\frac{\pi}{2}-} \tan x d x
$$

(c) $\int_{0}^{2-} \frac{1}{\sqrt{4-x^{2}}} d x$
(d)

$$
\int_{0_{+}}^{1} \frac{1-\ln x}{x^{4}} d x
$$

2. For each of the following sequences, determine convergence or divergence. In the case of convergence, find the limit of the sequence. Briefly explain your reasoning!
(a) $c_{n}=\sqrt{1-\frac{3}{n}}$
(b) $\quad d_{n}=\frac{\cos ^{4}\left(n^{3}+n^{2}+5\right)}{n^{2}+23}$
(c) $e_{n}=1+\arctan n$
(d) $u_{n}=\frac{e^{n}}{n^{5}}$
(e) $\quad z_{n}=\frac{\left(n^{5}+1\right)^{3}(1-4 n)^{2}}{(n+9)^{17}}$
3. Consider the following recursively defined sequence:

$$
\begin{aligned}
& a_{1}=4 \\
& a_{2}=2 \\
& a_{n}=a_{n-1} a_{n-2}-a_{n-1}-a_{n-2}+1 \text { for } n \geq 3 .
\end{aligned}
$$

Find the numerical values of a_{3}, a_{4}, a_{5} and a_{6}. (Show your work.)
4. To which of the following series does the " nth term test for divergence" apply? Explain!
(a) $\sum_{n=1}^{\infty} \frac{n}{n+5}$
(b) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n}$
(d) $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
(e) $\sum_{n=1}^{\infty} \arctan (n)$
(e) $\quad \sum_{n=1}^{\infty} \arctan (n)$
(f) $\quad \sum_{n=1}^{\infty} n^{1 / n}$

Extra Credit: For $\mathrm{n} \geq 1$, let

$$
a_{n}=\int_{0}^{1}\left(x^{2}+2\right)^{n} d x
$$

Determine convergence or divergence of the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$. (Hint: Do not try to evaluate the integral! Calculator solutions are not accepted.)

There is more danger of numerical sequences continued indefinitely than of trees growing up to heaven. Each will some time reach its greatest height.

- Friedrich Ludwig Gottlob Frege, Grundgesetz der Arithmetik (1893)

