1. For each of the following improper integrals, determine convergence or divergence. Justify your answers!
(a) $\int_{0+}^{1} \frac{-\ln x}{x} d x$
(b) $\int_{0+}^{\frac{\pi}{2}} \frac{\cos y}{\sqrt{\sin y}} d y$
(c) $\int_{0+}^{\infty} \frac{1}{x^{\frac{2}{3}}+x^{\frac{4}{3}}} d x$
(d) $\int_{0+}^{1} \ln t d t$
2. For each of the following sequences determine convergence or divergence. In the case of convergence, determine the limit of the sequence as well. Briefly, justify each answer.
(a) $\quad a_{n}=\left(\frac{n}{1+n}\right)^{n}$
(b) $b_{n}=\frac{2^{n}+3^{n}+2008}{e^{n}+1789}$
(c) $c_{n}=\frac{123 \sin (1+n)+9 \cos (3+n)+n^{2}+1234}{\sqrt{n^{5}+99}}$
(d) $d_{n}=\sqrt{1+n+14 n^{2}+16 n^{4}}-\sqrt{1+4 n+n^{2}+16 n^{4}}$
(e) $e_{n}=e^{-\frac{1+n}{3+5 \ln n}}$
3. Consider the following recursively defined sequence:

$$
\begin{aligned}
& b_{1}=1 \\
& b_{2}=2 \\
& b_{n}=b_{n-1}+5 b_{n-2} \text { for all } n \geq 3 .
\end{aligned}
$$

Let $r_{n}=b_{n} / b_{n-1}$ and assume that the limit of r_{n} as $n \rightarrow \infty$ exists. Find this limit. (Show your work.)
4. Which of the following infinite series are geometric and which are not? For those that are geometric, determine convergence or divergence. In the case of convergence, find the limit. Show your work!
(a) $\sum_{n=0}^{\infty} \frac{5^{n+1}}{9^{n-1}}$
(b) $\sum_{n=0}^{\infty} \frac{3^{n} 2^{2 n+1}}{5^{n}}$
(c) $\sum_{n=0}^{\infty} \frac{2^{n}}{n^{n}}$
(d) $\sum_{n=0}^{\infty} \frac{13\left(2^{3 n+7}\right)}{9^{n}}$
(e) $\sum_{n=0}^{\infty} \frac{3^{n}+1}{4^{n}}$

Extra Credit: Determine whether the following improper integral converges or diverges. Show your work!

$$
\int_{0}^{1-} \sqrt{\frac{1+x}{1-x}} d x
$$

Zeno-phobia: the irrational fear of converging sequences.

- Anonymous

