
MATH 162              Practice QUIZ VII 
 

  

1.   Without using l’Hôpital’s rule, find 
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2. By differentiating an appropriate power series, compute the following sum: 
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3.  By twice differentiating an appropriate power series, compute the following 

sum: 
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4.   Find the Taylor series of  

1cos)(  xxF  

centered at x = -1. 

Hint:  Let u = x +1; find the Maclaurin series for cos .u  

 

5.   Let F(x) = x
4
 ln(1+x

2
).   Find F

(2072)
(0).    

Hint:  Beginning with a geometric series, find the Maclaurin series expansion of 

ln(1 + t).   

 

6. State Euler’s identity.  Use Euler’s identity to express cos (4x) in terms of cos x and 

sin x. 

 

7.  Solve the equation z
4
 = -1. 

 

8.   Solve the equation z
3
 = i.  

 

9.  Simplify each of the following, expressing each answer in the form a + bi.  



 

(a)     3(2 – 5i) – 11(3 – 4i) 

(b)     ( 4 + 5i)(1 – 7i) 
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(e)     (1 + 2i)
2
 

(f)   i531  

 

10.    Express each of the following in polar form:  (a)   1 + i,  (b)   3 – 3i,  

(c)  i344  ,    (d)   5 + 12i 

 

11.   Solve the equation  z
5
 = 1.   (You should have five solutions.) 

 

 

12.       Using Euler’s formula, express sin 5x in terms of sin x and cos x.   (Hint:   
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13.  Without using L’Hôpital’s rule, find 
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14.    Show that cosh(x i) = cos x and that sinh (x i) = i sin x.   

 

15.   Find the six sixth roots of 64. 

 



16.   Express the following integral as a power series: 
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17.   Find the first four terms of the binomial series of the function (1 + x
2
)

-1/3
. 

 

18.   Express as a numerical series: 

 

 

 

19.   Use an appropriate binomial series to find the first four non-zero terms of the 

Maclaurin series for arcsin x. 

 

20.   (Thomas)   Verify the integration formula 
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where C = C1 + C2i   is a complex constant of integration. 

Using this formula, evaluate each of the following integrals 

 dxbxeanddxbxe axax sincos  

21. Express each of the following in the form a + bi 

(a)    i-1
 

(b)    (-1)
i
 

(c)   (1 + i)
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(d)    3e
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22.  Using substitution (or any other method that you prefer), evaluate each of the 

following integrals: 
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