MATH 162

PRACTICE TEST 1A

1. Use integration by parts to evaluate the following integral:

$$
\int(\ln x)^{2} d x
$$

2. The base of a solid is the region enclosed by $y=1 / x, y=0, x=1$, and $x=4$. Every cross section of the solid taken perpendicular to the x -axis is an isosceles right triangle with its hypotenuse across the base. Express the volume of the solid as a Riemann integral. (You need not evaluate your integral.)
3. A cylindrical barrel, standing upright on its circular end, contains muddy water. The top of the barrel, which has a diameter of 3 feet, is open. The height of the barrel is 4 feet and it is $3 / 4$ filled with muddy water. The weight of the muddy water at a distance of h feet from the bottom of the barrel is given by $\mathrm{w}(\mathrm{h})=51+\mathrm{k}(4-\mathrm{h})$ pounds/feet ${ }^{3}$, where k is a positive constant. Find the total work done in pumping the muddy water to the top rim of the barrel. (Note: Evaluate your integral. Your answer will include the constant k.)
4. A snail crawls along the curve $y=x^{3 / 2}$ at a speed of 3 feet per hour. How long does it take the snail to travel from the point $(1,1)$ to the point $(4,8)$? Give a numerical answer.
5. Using implicit differentiation, find a formula for the derivative of each of the following inverse functions:
(A) $\operatorname{arcsinh} x$
(B) $\operatorname{arccosh} x$
(C) $\operatorname{arctanh} x$
6. A cable that weighs $2 \mathrm{lb} / \mathrm{ft}$ is used to lift 800 lb of coal up a mineshaft 500 ft deep. Find the work done. Express your answer numerically.
7. Consider the region, R, bounded by the curves $y=\ln x, y=0$, and $x=2$. Suppose that R is rotated about the line $\mathrm{x}=-1$. Express the volume of this solid of revolution as a Riemann integral using each of the following methods. Be certain to make a sketch for each.
(A) cylindrical shells
(B) washers
8. The region in the first quadrant bounded by the curves

$$
y=(1+x)^{1 / 2}, y=0, x=0, \text { and } x=1
$$

is rotated about the x-axis. Find the surface area of this solid of revolution. Express your answer numerically.
9. True or False? Justify each answer.
(A) $\mathrm{x}(3 \mathrm{x}+1)^{9}=O\left(\mathrm{x}^{10}\right)$
(B) $1 / \mathrm{x}=\mathrm{o}\left(1 / \mathrm{x}^{2}\right)$
(C) $1 / \mathrm{x}^{4}=o\left(1 / \mathrm{x}^{3}\right)$
(D) $(1+\ln \mathrm{x})^{21}=o(\mathrm{x})$
(E) $\mathrm{e}^{\mathrm{x}}=o\left(\mathrm{x}^{\mathrm{x}}\right)$
10. Suppose that the volume of water required to fill a hollow object to a depth of h inches (where $0 \leq \mathrm{h} \leq \pi / 2$) is given by the function:

$$
V(h)=1.5 h+\sin h \quad \text { cubic inches. }
$$

What is the cross-sectional area of the object 1 inch above its base?

