MATH 162

1. For each series below, determine convergence or divergence. Justify each answer.
(a) $\sum_{m=1}^{\infty} \frac{1}{\sqrt{m+5}}$
(b) $\quad \sum_{n=1}^{\infty} \frac{10^{n}(n!)^{3}}{(3 n)!}$
(c) $\quad \sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$
(d) $\quad \sum_{n=1}^{\infty} \frac{3-\cos ^{3} n}{n(2+\cos n)}$
2. For each sequence below, determine convergence or divergence. In the case of convergence, find the limit. Justify your answer.
3. $\frac{11^{n}}{9^{2 n-3}}$
4. $\left(\frac{n}{n+1}\right)^{n}$
5. $n^{2} \sin \left(\frac{3}{n^{2}}\right)$
6. $\frac{\sqrt{n^{4}+n^{3}+n+13}}{(3 n+11)^{2}}$
7. $\sqrt{n^{2}+9 n+7}-\sqrt{n^{2}+5 n-13}$
8. $\frac{(\ln n)^{8}}{n}$
9. Consider the following recursively defined sequence:

$$
\begin{aligned}
& \mathrm{b}_{1}=7, \\
& b_{n+1}=\frac{\left(b_{n}+\frac{7}{b_{n}}\right)}{2} \quad \text { for } \mathrm{n} \geq 1
\end{aligned}
$$

(a) Find the values of b_{2} and b_{3}.
(b) Assuming that the limit of b_{n} as $\mathrm{n} \rightarrow \infty$ exists, find its value.
4. For each of the following improper integrals, determine convergence or divergence. Justify each answer!
(A) $\int_{0+}^{\frac{1}{3}} \frac{1}{x(\ln x)^{2}} d x$
(B) $\int_{0+}^{\infty} \frac{1}{\sqrt[3]{x+x^{6}}} d x$
(C) $\int_{0+}^{\infty} \frac{1+x+x^{2}}{x^{4}+x} d x$
(D) $\int_{0}^{\frac{\pi}{2}-} \sec ^{2} x d x$
5. For each of the following sequences, determine convergence or divergence. In the case of convergence, find the limit of the sequence.
(A) $\quad x_{n}=e^{\frac{1}{n}}$
(B) $y_{n}=\frac{n!}{n+1}$
(C) $z_{n}=\frac{\sin n}{n}+\frac{5}{n}$
(D) $c_{n}=\frac{3(2 n+1)^{3}}{(1-n)^{2}(4 n+13)}$
(E) $\quad a_{n}=\sec \left(\ln \left(\sin ^{4}\left(\frac{\pi}{2}+\frac{1}{n^{2}}\right)\right)\right)$
6. For each of the infinite series below, determine convergence or divergence. In the case of convergence, compute the sum of the series. Be certain to justify your answers!
(a) $\quad \sum_{n=0}^{\infty} \frac{13^{n}}{e^{n}}$
(b) $\sum_{n=1}^{\infty} \sec \left(e^{-n^{2}}\right)$
(c) $\quad \sum_{n=1}^{\infty} \frac{3^{2 n+1}}{5^{n-1}}$
(d)

$$
\sum_{n=1}^{\infty} \frac{\left(1+n^{2}\right)^{2}}{n^{3}+99 n^{2}+101 \sqrt{n}+13}
$$

(e) $\quad \sum_{n=1}^{\infty} \cos \left(\frac{2013}{n}\right)$
(f) $\quad \sum_{n=1}^{\infty} \frac{n^{4}+n^{2}+13}{\left(n^{2}+4\right)^{2}}$
(g) $0.04040404 \ldots$
7. For each improper integral given below, determine convergence or divergence. (No need to use the Comparison Test here.) Justify your answers!
(A) $\int_{0}^{\infty} e^{-2012 x} d x$
(B) $\int_{19}^{\infty} \frac{x^{3}}{x^{4}+33} d x$
(C)

$$
\int_{71}^{\infty} \frac{1}{\sqrt{x+13}} d x
$$

(D) $\quad \int_{3}^{\infty} \frac{1}{(x+9)^{13 / 11}} d x$
(E) $\int_{5}^{\infty} \frac{1}{x(\ln x) \ln (\ln x)} d x$
(F)

$$
\int_{5}^{\infty} \frac{1}{x(\ln x)(\ln (\ln x))^{1.01}} d x
$$

8. For each improper integral given below, determine convergence or divergence. (You will need to use the Comparison Test here.) Justify your answers!
(A) $\int_{0}^{\infty} \frac{\sin ^{2013}(3+5 x)}{(2012+x)^{2}} d x$
(B) $\quad \int_{4}^{\infty} \frac{1}{(\ln x)-1} d x$
(C) $\int_{0}^{\infty} \frac{(3+x)^{2}+133 x \ln x+5 x+1}{\left(1+99 x+x^{2}\right)^{4}} d x$
(D) $\int_{1}^{\infty} \frac{\ln x}{x^{3}} d x$
9. Find the volume of the solid of revolution obtained by rotating the curve $y=1 /\left(1+x^{2}\right)^{1 / 2}$ from $x=0$ to $x=\infty$ about the x-axis or explain why no such number exists.

Extra extra credit:

For which values of p and q does the following improper integral converge?

$$
\int_{0+}^{\infty} \frac{1}{x^{p}+x^{q}} d x
$$

> My New Zoo, McGrew Zoo, will make people talk. My New Zoo, McGrew Zoo, will make people gawk At the strangest odd creatures that ever did walk.
> I'll get, for my zoo, a new sort-of-a hen
> Who roosts in another hen's topknot, and then
> Another one roosts in the topknot of his,
> And another in his, and another in HIS,
> And so forth and upward and onward, gee whiz?

- Dr. Seuss, If I Ran the Zoo

