MATH 162

1. For each series below, determine absolute convergence, conditional convergence or divergence. Justify each answer.
(a) $\sum_{n=3}^{\infty}(-1)^{n} \frac{13}{(\ln n)^{13}}$
(b) $\sum_{k=1}^{\infty}(-1)^{k} \frac{(k+3)\left(k^{2}+5\right)}{(k+13 \ln k)^{4}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{\left(1+\frac{1}{n}\right)^{n^{2}}}$
(d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\ln \left(e^{n}+e^{-n}\right)}$
(e) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{13}}{(n+13)!}$
2. For each power series below, determine the radius of convergence and the interval of convergence. Study the behavior of each power series at the endpoints.
(a) $\sum_{n=1}^{\infty} \frac{13^{n}}{n(n+13)} x^{n}$
(b) $\quad \sum_{n=1}^{\infty} \frac{1}{n(n+3)(n+11)}(x-4)^{n}$
(c) $\quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n+7}}(x+13)^{n}$
3. (a) Find the $3^{\text {rd }}$ order Maclaurin polynomial of $\cosh x$.
(b) Find the $5^{\text {th }}$ order Taylor polynomial of $\cos x$ centered at $x=\pi / 2$.
4. Find the $4^{\text {th }}$ order Taylor polynomial of e^{x} centered at $\mathrm{x}=2$.
5. Find the $3^{\text {rd }}$ order Maclaurin polynomial of

$$
f(x)=4+(x+13)^{2}+(x+13)^{3}
$$

6. By differentiating the power series expansion of $y=1 /(1-x)$, find the value of

$$
\sum_{k=0}^{\infty} \frac{k}{13^{k}}
$$

7. Find the first five non-zero terms of the Maclaurin series expansion of

$$
h(x)=\left(1+2 x^{2}\right) e^{3 x}
$$

8. Let $f(x)=x^{8} e^{5 x}$. Compute $f^{(100)}(0)$. Do not simplify your answer.
9. Find the radius of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{n!}{(1)(3)(5)(7) \ldots(2 n-1)} x^{n}
$$

10. Find the radius of convergence of the power series:

$$
\sum_{n=0}^{\infty} n!x^{2^{n}}
$$

11. Find the radius of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{n}} x^{n}
$$

12. Without using l'Hôpital's rule, calculate the following limit. Show your work!

$$
\lim _{t \rightarrow 0} \frac{t e^{4 t}-\sin (3 t)+2 t-4 t^{2}}{t^{3}}
$$

13. Let $\mathrm{G}(\mathrm{x})=\mathrm{x}^{3} \cosh (3 \mathrm{x})$. Using an appropriate Maclaurin series, compute $\mathrm{G}^{(2013)}(0)$. (Do not try to simplify your answer.)
14. Compute:

$$
\int \frac{x^{2}+x+4}{x^{2}+1} d x
$$

15. (a) Express $\left(\frac{13+i}{1+i}\right)(1-2 i)+4+5 i$ as a complex number of the form a + bi.
(b) By expressing -1 as an appropriate complex power of e, calculate the five fifth roots of $-i$. Express your answers in the form $\mathrm{a}+\mathrm{bi}$.
(c) Using Euler's formula, express $\cos (4 \mathrm{x})$ in terms of $\cos \mathrm{x}$ and $\sin \mathrm{x}$.
16. Give the correct form (for example: $\mathrm{A} /(\mathrm{x}+2)+\mathrm{B} /(\mathrm{x}-13)$) for the partial fraction decomposition of the following rational functions. Do not solve for A, B, C, \ldots

$$
\frac{x^{7}+5 x^{3}+9 x+13}{\left(x^{2}-2 x-15\right)^{2}\left(x^{2}+2 x+15\right)^{2}}
$$

17. Integrate each of the following functions:
(a) $\frac{1}{x^{2}-2 x+1}$
(b) $\tan ^{7} x$
(c) $\frac{x}{x^{4}+4}$
(d) $\frac{4 x^{3}-20 x}{x^{4}-10 x^{2}+9}$
(e) $\tan ^{6} 2 x$
(f) $\sec ^{4} x$
(g) $(\sec x)^{11 / 2} \tan x$
(h) $(\sin 10 x)(\sin 5 x)$
(i) $\sin ^{9} x \cos ^{11} x$
(j) $\quad(\cos x)(\sin (\sin x))$
18. Express each of the following as a trigonometric integral. Do not evaluate.

$$
\text { (a) } \int \frac{x^{7}}{x^{2}+1} d x
$$

(b) $\int x^{9} \sqrt{x^{2}+1} d x$
(c) $\int \frac{x^{5}}{\sqrt{1-x^{2}}} d x$
(d) $\int \frac{\sqrt{x^{2}-1}}{x^{8}} d x$
19. Using division of power series, find the first three non-zero terms of the Maclaurin series expansion of

$$
f(x)=\frac{e^{2 x}+1}{\cos x}
$$

20. Using multiplication of power series, find the first four non-zero terms of the Maclaurin series expansion of

$$
g(x)=e^{x^{2}}\left(1+x^{2}+x^{3}\right)
$$

21. Determine the interval of convergence of the following power series. (You need not study end-point behavior.)

$$
\sum_{n=1}^{\infty} \frac{n^{13} 13^{n}}{\sqrt{n+2012}}(x-13)^{n}
$$

22. Using substitution (or any other method that you prefer), evaluate each of the following integrals:
(a) $\int \frac{\tan (\ln x)}{x} d x$
(b) $\int \sqrt{x} \sin \left(2 x^{3 / 2}\right) d x$
(c) $\int e^{x} \sec ^{2}\left(e^{x}-13\right) d x$
(d) $\int \sec x \tan x \sqrt{1+\sec x} d x$
(e) $\int \sqrt{a+b \sqrt{c+x}} d x$
(f) $\int \frac{e^{x} \arcsin \sqrt{x}}{2 \sqrt{x-x^{2}}} d x$
(g) $\int \frac{d x}{\sqrt{\arctan x}\left(1+x^{2}\right)}$
23. Solve each of the following initial value problems:
(a) $\quad \mathrm{dy} / \mathrm{dt}=(\ln t)^{3} / t, \quad y(3)=13$
(b) $\quad d y / d x=\sec ^{2} x+\tan ^{2} 3 x+14, y(0)=88$
(c) $\mathrm{ds} / \mathrm{dt}=\mathrm{t} \cos \mathrm{t}+1+\sin \mathrm{t}, \mathrm{y}(\pi / 2)=2013$
24. Analyze the behavior of the series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+4}}{\left(n^{1 / 3}+2013\right)^{5}}
$$

As far as the laws of mathematics refer to reality, they are not certain; as far as they are certain, they do not refer to reality.

- Albert Einstein

