1. Sketch the region in the first quadrant bounded by the curve $y=1+\ln x$ and the lines $x=e$, and $y=1$. This region is rotated about the line $x=-7$. Using the shell method, write a definite integral that expresses the volume of this solid of revolution. Do not evaluate.

To use shells, we fix x. Consider a thin vertical rectangle between $x=1$ and $x=e$. The thickness of the rectangle is Δx. The area of the shell associated with this rectangle is $A(x)=2 \pi(x-(-7)) \ln x$. Thus the total volume of the solid is:

$$
V=\int_{1}^{e} A(x) d x=2 \pi \int_{1}^{e}(x+7) \ln x d x
$$

2. The base of a certain solid is an elliptical region given by the inequality $9 x^{2}+4 y^{2} \leqq 36$. Cross-sections perpendicular to the y-axis are semicircles. Express the volume of the solid as a definite integral. Do not evaluate.

Consider a thin horizontal rectangle between $y=-3$ and $y=3$. The thickness of the rectangle is Δy. The area of the semicircle associated with this rectangle is $(\pi / 2) x^{2}$, where $x=\operatorname{sqrt}\left(\left(36-4 y^{2}\right) / 9\right)$. Thus the total volume of the solid is:

$$
V=\int_{-3}^{3} \frac{1}{2} \pi\left(\sqrt{\frac{36-4 y^{2}}{9}}\right)^{2} d y=\frac{\pi}{18} \int_{-3}^{3}\left(36-4 y^{2}\right) d y
$$

3. Let T be the triangular region with vertices $(0,0),(4,4)$ and $(0,5)$. Suppose that T is rotated about the axis $\mathrm{y}=-8$. Using the washer method, write a definite integral that expresses the volume of this solid of revolution. Do not evaluate.

The equation of the line joining $(0,5)$ and $(4,4)$ is $y=5-x / 4$ and the equation of the line joining $(0,0)$ and $(4,4)$ is $y=x$.

To use washers, we fix the value of x (between 0 and 4). Consider a corresponding vertical rectangle with width Δx. The outer radius of the washer is $5-x / 4-(-8)=13-(x / 4)$ and the inner radius of the washer is $x+8$. Hence the volume of the solid is:

$$
V=\int_{0}^{4} \pi\left(\left(13-\frac{x}{4}\right)^{2}-(x+8)^{2}\right) d x
$$

Extra Credit:

A round hole of length $2 h$ is bored through the center of a solid sphere of radius R. (Assume that $\mathrm{h}<\mathrm{R}$). Find the volume of the solid that remains.

If c denotes the radius of the hole, then $c^{2}+h^{2}=R^{2}$. Consider the region in the upper halfplane bounded by the circle $x^{2}+y^{2}=R^{2}$ and the line $y=c$. Rotate this region about the x axis. Consider a thin horizontal rectangle y-units above the axis where $c \leq y \leq R \quad$ Rotate this rectangle about the x-axis to obtain a shell. The volume of this shell is
$2 \pi y(2 x) \Delta y$, where $x=\left(R^{2}-y^{2}\right)^{1 / 2}$. Thus the total volume of this solid of revolution is given by:

$$
\begin{aligned}
& V=\int_{c}^{R} 2 \pi y(2 x) d y=4 \pi \int_{c}^{R} y\left(\sqrt{R^{2}-y^{2}}\right) d y= \\
& \frac{4}{3} \pi\left(R^{2}-c^{2}\right)^{\frac{3}{2}}=\frac{4}{3} \pi\left(h^{2}\right)^{\frac{3}{2}}=\frac{4}{3} \pi h^{3}
\end{aligned}
$$

Notice the remarkable fact that this volume does not depend upon the radius of the sphere!

The Volume of Revolution Around the Horizontal Axis Between
$f(x)=3$
and
$g(x)=\left(25-x^{n} 2\right)^{n}(1 / 2)$

