
MATH 162               Solutions: QUIZ III         
 

1.   Explain why the following improper integral diverges: 
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Solution: 

First note that  x >  ln x for all x   e.   Hence:   
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and so: 
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Recalling that  
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diverges by the p-test, we now invoke the Comparison Test to obtain the desired result. 

 

 

 

2.    Compute the value of the following convergent improper integral.  Assume that b is a 

positive constant. 
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Solution: 

Using the definition of improper integral, we find: 
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3.   Evaluate the following convergent improper integral.  Show your work!  Calculator 

solutions are not acceptable. 
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Using the definition of improper integral: 
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4.    Evaluate the following convergent improper integral.  Show your work!  Calculator 

solutions are not acceptable. 



 

 

3 

 

dx
x

x




0

21

arctan

 

 

 Solution: 

Using the definition of improper integral: 
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For each of the following improper integrals, determine convergence or divergence.  Justify 

each answer!  (That is, if you use the comparison test, exhibit the function that you choose to 

use for comparison and show why the appropriate inequality holds.) Calculator solutions are 

not acceptable. 
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To apply the comparison test, observe that, for all x ≥ 13: 



 

 

4 

 

  24

2

4

222

4

2 1
15

1513

2013

13
0

xx

x

x

xxx

x

xx










 

 

Applying the p-test, the improper integral 

dx
x



13

2

1

 
 

converges, and hence, invoking the Comparison Test, the original improper integral must 

converge. 
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Solution: 

To apply the comparison test, observe that, for all x ≥ 13: 
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Since, the improper integral 
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 clearly diverges, the original improper integral must diverge as well. 
 

Extra Extra Credit: 
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   (Hint:  Try using the Comparison Test.) 

 

Solution: 

Since x
2
 > x

4
 for 0 ≤  x < 1, 1– x

2
 < 1 – x

4
, and thus 
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 for 0 ≤  x < 1. 
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Thus, invoking the Comparison Test, the original integral converges also. 

 

 


