SOLUTIONS: QUIZ IV

1. Select any three of the following four integrals. For each improper integral that you select, determine convergence or divergence. Justify your answers! (You may answer all four for extra credit.)
(a) $\int_{0}^{3-} \frac{1}{(3-x)^{4}} d x$

This integral diverges since:

$$
\begin{aligned}
& \left.\int_{0}^{3-} \frac{1}{(3-x)^{4}} d x=\lim _{c \rightarrow 3-} \int_{0}^{c} \frac{1}{(3-x)^{4}} d x=\lim _{c \rightarrow 3-} \frac{1}{3(3-x)^{3}} \right\rvert\, \begin{array}{l}
c \\
0
\end{array}= \\
& \lim _{c \rightarrow 3-}\left(\frac{1}{3(3-c)^{3}}-\frac{1}{3(3-0)^{3}}\right)=\infty
\end{aligned}
$$

(b) $\int_{0+}^{1} \frac{1+5 x+7 x^{15}}{\sqrt{x}} d x$

Note that the dominant term in the numerator is 1 (not x^{15}).
This integral converges because:

$$
0<\frac{1+5 x+7 x^{15}}{\sqrt{x}} \leq \frac{13}{\sqrt{x}} \text { for } 0<x \leq 1
$$

Using the p-test, we know that $\int_{0+}^{1} \frac{1}{\sqrt{x}} d x$ converges. Hence, by the comparison test,

$$
\int_{0+}^{1} \frac{1+5 x+7 x^{15}}{\sqrt{x}} d x \text { converges } .
$$

(c) $\int_{0}^{\frac{\pi}{4}-} \tan 2 x d x$

This integral diverges because:

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}-} \tan 2 x d x=\lim _{c \rightarrow \frac{\pi}{4}-} \int_{0}^{c} \tan 2 x d x=\left.\lim _{c \rightarrow \frac{\pi}{4}-} \frac{1}{2}(-\ln |\cos 2 x|)\right|_{0} ^{c}= \\
& -\frac{1}{2} \lim _{c \rightarrow \frac{\pi}{4}-}(\ln |\cos 2 c|-\ln (\cos 0))=-\frac{1}{2} \lim _{c \rightarrow \frac{\pi}{4}-}(\ln |\cos 2 c|)=\infty
\end{aligned}
$$

since $\cos (2 c) \rightarrow 0+$ as $c \rightarrow(\pi / 4)$-.
(d) $\int_{0+}^{\infty} \frac{1}{x^{1 / 4}+x+x^{2}} d x$

This integral converges because, by definition:

$$
\int_{0+}^{\infty} \frac{1}{x^{\frac{1}{4}}+x+x^{2}} d x=\int_{0+}^{1} \frac{1}{x^{\frac{1}{4}}+x+x^{2}} d x+\int_{1}^{\infty} \frac{1}{x^{\frac{1}{4}}+x+x^{2}} d x
$$

and each of these two integrals converges (by virtue of the Comparison Test):
For $0<x \leq 1$:

$$
0<\frac{1}{x^{\frac{1}{4}}+x+x^{2}}<\frac{1}{x^{\frac{1}{4}}}
$$

and by the p-test for integrals of type II,

$$
\int_{0+}^{1} \frac{1}{x^{\frac{1}{4}}} d x \text { converges. }
$$

For $x \geq 1$:

$$
0<\frac{1}{x^{\frac{1}{4}}+x+x^{2}}<\frac{1}{x^{2}}
$$

and by the p-test for integrals of type I,

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x \text { converges. }
$$

2. For each of the following sequences, determine convergence or divergence. In the case of convergence, find the limit of the sequence. Briefly justify each answer. (Select any 7 of the 8 sequences. For extra credit, you may solve all eight.)
(a) $a_{n}=\frac{n+2013 \ln n}{n!}$

Since $n=o(n!)$ and $\ln n=o(n),\left\{a_{n}\right\}$ converges and its limit is 0 .
(b)

$$
b_{n}=3^{-n}+\ln \left(\frac{n+1789}{n+1492}\right)+\left(1+\frac{4}{n}\right)^{n}
$$

Using the fact that the limit of the sum of two convergent sequences is the sum of their limits, we have:

$$
\lim b_{n}=\lim 3^{-n}+\lim \ln \left(\frac{n+1789}{n+1492}\right)+\lim \left(1+\frac{4}{n}\right)^{n}=0+\ln 1+e^{4}=e^{4}
$$

Thus the sequence $\left\{b_{n}\right\}$ converges and its limit is e.
(c) $c_{n}=\frac{\sin 4 n}{n}$

Since $-1 \leq \sin (4 n) \leq 1$, we have:

$$
-\frac{1}{n} \leq \frac{\sin 4 n}{n} \leq \frac{1}{n}
$$

Applying the Squeeze Theorem, we conclude that $\left\{c_{n}\right\}$ converges to 0 .
(d) $\quad d_{n}=\frac{n^{n}}{n^{14}+1}$

Observing that $d_{n} \geq n^{n} /\left(n^{14}+n^{14}\right)=1 / 2 n^{n} / n^{14} \rightarrow \infty$ as $n \rightarrow \infty$, we conclude that d_{n} is unbounded, and thus divergent.
(e) $\quad \mathrm{e}_{\mathrm{n}}=(-1)^{\mathrm{n}} \cos (1 / \mathrm{n})$

First note that, as $n \rightarrow \infty, \cos (1 / n) \rightarrow \cos 0=1$.
Thus for large n, e_{n} is approximately $(-1)^{n}$ which is a divergent sequence.

$$
(f) \quad f_{n}=\frac{\left(n^{2}+7 n+1\right)^{3}(3 n+77)\left(2 n^{5}+n+4\right)^{2}}{1+\ln n+5 n^{8}(n+1)^{9}}
$$

By selecting the dominant terms, we have:

$$
\frac{\left(n^{2}+7 n+1\right)^{3}(3 n+77)\left(2 n^{5}+n+4\right)^{2}}{1+\ln n+5 n^{8}(n+1)^{9}} \cong \frac{\left(n^{2}\right)^{3}(3 n)\left(2 n^{5}\right)^{2}}{5 n^{8}(n)^{9}}=\frac{12 n^{17}}{5 n^{17}}=\frac{12}{5}
$$

Hence we conclude that $\left\{f_{n}\right\}$ converges to $12 / 5$.
(g) $\quad \mathrm{g}_{\mathrm{n}}=\arctan (\ln (\mathrm{n}))$

As $n \rightarrow \infty$, ln $n \rightarrow \infty$. and hence:

$$
g_{n}=\arctan (\ln n) \rightarrow \frac{\pi}{2}
$$

Thus the sequence $\left\{g_{n}\right\}$ converges and its limit is $\pi / 2$.
(h)

$$
h_{n}=\sqrt{n^{2}+9 n+31}-\sqrt{n^{2}+3 n+5}
$$

Rationalizing this expression:

$$
\begin{aligned}
& h_{n}=\sqrt{n^{2}+9 n+31}-\sqrt{n^{2}+3 n+5}= \\
& \left(\sqrt{n^{2}+9 n+31}-\sqrt{n^{2}+3 n+5}\right) \frac{\sqrt{n^{2}+9 n+31}+\sqrt{n^{2}+3 n+5}}{\sqrt{n^{2}+9 n+31}+\sqrt{n^{2}+3 n+5}}= \\
& \frac{\left(n^{2}+9 n+31\right)-\left(n^{2}+3 n+5\right)}{\sqrt{n^{2}+9 n+31}+\sqrt{n^{2}+3 n+5}}=\frac{6 n+26}{\sqrt{n^{2}+9 n+31}+\sqrt{n^{2}+3 n+5}} \\
& \cong \frac{6 n}{n+n}=3
\end{aligned}
$$

Thus the sequence $\left\{h_{n}\right\}$ converges and its limit is 3.

