SOLUTIONS: QUIZ Y

1. Determine the interval of convergence of each of the following power series. Show your work! (You need not study end-point behavior.)
(a) $\sum_{n=0}^{\infty} \frac{n^{7} 7^{n}}{\sqrt{n+2013}}(x+13)^{n}$

Applying the Ratio Test:
$\left|\frac{\frac{(n+1)^{7} 7^{n+1}}{\sqrt{n+1+2013}}(x+13)^{n+1}}{\frac{n^{7} 7^{n}}{\sqrt{n+2013}}(x+13)^{n}}\right|=\sqrt{\frac{n+2013}{n+2014}}\left(\frac{n+1}{n}\right)^{7} \frac{7^{n+1}}{7^{n}}|x+13|=$

$$
7 \sqrt{\frac{n+2013}{n+2014}}\left(\frac{n+1}{n}\right)^{7}|x+13| \rightarrow 7(1)(1)|x+13|=7|x+13|
$$

Thus the series converges absolutely when $7|x+13|<1$.
This is equivalent to $|x+13|<1 / 7$. Hence the interval of convergence is (-13 - 1/7, -13 + 1/7) and the radius of convergence is 1/7.
(b) $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(n!)^{2} 2^{2 n}}(x-3)^{2 n}$

$$
\left|\frac{\frac{1}{((n+1)!)^{2} 2^{2 n+2}}(x-3)^{2 n+2}}{\frac{1}{(n!)^{2} 2^{2 n}}(x-3)^{2 n}}\right|=\left(\frac{n!}{(n+1)!}\right)^{2} \frac{2^{2 n}}{2^{2 n+2}}\left|(x-3)^{2}\right|=\frac{(x-3)^{2}}{4(n+1)^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence the series converges for all real numbers x. The interval of convergence is thus $(-\infty, \infty)$.
2. For each of the following numerical series, determine absolute convergence, conditional convergence or divergence. Justify your answers.
(a) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln \left(1+\frac{1}{n}\right)}$

Note that, as $n \rightarrow \infty$:

$$
\left|a_{n}\right|=\left|\frac{(-1)^{n}}{\ln \left(1+\frac{1}{n}\right)}\right|=\frac{1}{\ln \left(1+\frac{1}{n}\right)} \rightarrow \infty
$$

Thus, since a_{n} does not converge to 0 , the $n^{\text {th }}$ term Test for Divergence implies that our series diverges.
(b) $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln \left(n^{4}\right)}$

Since $n \ln \left(n^{4}\right)=4 n \ln n$:
$\sum_{n=2}^{\infty}\left|\frac{(-1)^{n+1}}{n \ln \left(n^{4}\right)}\right|=\frac{1}{4} \sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges by the $p-$ test .

Hence our original series does not converge absolutely. However, it does converge conditionally because the Leibniz-Cauchy Theorem is applicable:
$\frac{1}{4 n \ln n} \rightarrow 0$ as $n \rightarrow \infty$ and $\frac{1}{4(n+1) \ln (n+1)}<\frac{1}{4 n \ln n} \quad$ for all $n \geq 2$
(c) $\quad \sum_{n=0}^{\infty}(-1)^{n+1}\left(\frac{1+n^{2}}{(1+3 n)^{2}}\right)^{n}$

Applying the Root Test we find that the series converges absolutely:
$\left|a_{n}\right|^{\frac{1}{n}}=\left(\left(\frac{1+n^{2}}{(1+3 n)^{2}}\right)^{n}\right)^{\frac{1}{n}}=\frac{1+n^{2}}{(1+3 n)^{2}} \rightarrow \frac{1}{9}<1$
(d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n)!}{5^{n}(n!)^{2}}$

Applying the Ratio Test, we see that the series converges absolutely:

$$
\begin{aligned}
& \left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{(2 n+2)!}{5^{n+1}((n+1)!)^{2}}}{\frac{(2 n)!}{5^{n}(n!)^{2}}}=\frac{(2 n+2)!}{(2 n)!} \frac{5^{n}}{5^{n+1}} \frac{(n!)^{2}}{((n+1)!)^{2}}= \\
& (2 n+2)(2 n+1)\left(\frac{1}{5}\right)\left(\frac{1}{n+1}\right)^{2}=\frac{2}{5}\left(\frac{2 n+1}{n+1}\right) \rightarrow \frac{4}{5}<1
\end{aligned}
$$

Extra Credit: For the following numerical series, determine absolute convergence, conditional convergence or divergence. Justify your answer.

$$
\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{\sin \left(\frac{1}{n}\right)}{n}\right)
$$

We claim that the series converges absolutely.
Since

$$
\frac{\sin h}{h} \rightarrow 1 \text { as } h \rightarrow 0
$$

we have

$$
\frac{\sin \left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} \rightarrow 1 \text { as } n \rightarrow \infty
$$

and thus, for large n :

$$
0<\frac{\sin \left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}<2
$$

or equivalently:

$$
0<\sin \left(\frac{1}{n}\right)<\frac{2}{n}
$$

So:

$$
0<\frac{\sin \left(\frac{1}{n}\right)}{n}<\frac{2 / n}{n}=2\left(\frac{1}{n^{2}}\right)
$$

Using the Comparison Test, we find that our series converges absolutely since $\Sigma 1 / n^{2}$ converges (by the p-test).

Alternatively, $\sin (1 / n) \sim 1 / n$. So $(\sin (1 / n)) / n \sim 1 / n^{2}$. Now use the Limit Comparison Theorem.

If you disregard the very simplest cases, there is in all of mathematics not a single infinite series whose sum has been rigorously determined. In other words, the most important parts of mathematics stand without a foundation.

- Niels H. Abel (1802-1829)

