
Solutions:    QUIZ V 
 

 

1.    Determine the interval of convergence of each of the following power series.  

Show your work!    (You need not study end-point behavior.)                      
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Applying the Ratio Test: 
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Thus the series converges absolutely when 7|x+13| <  1.   

This is equivalent to |x+13| <  1/7.  Hence the interval of convergence is  

(-13 –  1/7,  -13 + 1/7) and the radius of convergence is 1/7.  
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Applying the Ratio Test: 
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Hence the series converges for all real numbers x.  The interval of convergence is 

thus (-, ). 

 

2.   For each of the following numerical series, determine absolute convergence, 

conditional convergence or divergence.  Justify your answers. 
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Note that, as n  :   
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Thus, since an does not converge to 0, the n
 th

 term Test for Divergence implies that 

our series diverges.  
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Since  n ln(n
4
) = 4n ln n: 
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Hence our original series does not converge absolutely.  However, it does converge 

conditionally because the Leibniz– Cauchy Theorem is applicable:  
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Applying the Root Test we find that the series converges absolutely: 
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Applying the Ratio Test, we see that the series converges absolutely: 
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Extra Credit:   For the following numerical series, determine absolute convergence, 

conditional convergence or divergence.  Justify your answer. 
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We claim that the series converges absolutely. 

Since  
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and thus, for large n: 
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Using the Comparison Test, we find that our series converges absolutely since  1/n
2
 

converges (by the p-test). 

 

Alternatively, sin(1/n) ~ 1/n.   So (sin(1/n))/n ~ 1/n
2
.  Now use the Limit Comparison 

Theorem. 

 

 

 

 

If you disregard the very simplest cases, there is in all of mathematics 

not a single infinite series whose sum has been rigorously determined. In 

other words, the most important parts of mathematics stand without a 

foundation. 

                                                 -   Niels H. Abel  (1802 - 1829) 


