SOLUTIONS: QUIZY

1. Determine the interval of convergence of each of the following power series.

Show your work!  (You need not study end-point behavior.)
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Thus the series converges absolutely when 7|x+13| < 1.

This is equivalent to [x+13| < 1/7. Hence the interval of convergence is
(-13 - 1/7, -13 + 1/7) and the radius of convergence is 1/7.
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Applying the Ratio Test:
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Hence the series converges for all real numbers x. The interval of convergence is

thus (-0, 20).

2. For each of the following numerical series, determine absolute convergence,

conditional convergence or divergence. Justify your answers.
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Thus, since a, does not converge to 0, the n™ term Test for Divergence implies that

our series diverges.
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Hence our original series does not converge absolutely. However, it does converge

conditionally because the Leibniz— Cauchy Theorem is applicable:
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Applying the Root Test we find that the series converges absolutely:
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Applying the Ratio Test, we see that the series converges absolutely:
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Extra Credit: For the following numerical series, determine absolute convergence,

conditional convergence or divergence. Justify your answer.
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We claim that the series converges absolutely.
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and thus, for large n:
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or equivalently:
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Using the Comparison Test, we find that our series converges absolutely since X' 1/n?

converges (by the p-test).

Alternatively, sin(1/n) ~ 1/n. So (sin(1/n))/n ~ 1/n*. Now use the Limit Comparison

Theorem.

If you disregard the very simplest cases, there is in all of mathematics
not a single infinite series whose sum has been rigorously determined. In
other words, the most important parts of mathematics stand without a
foundation.

- Niels H. Abel (1802 - 1829)



