SOLUTIONS: QUIZ VI

1. Find the $5^{\text {th }}$ order Taylor polynomial of $\mathbf{f}(\mathbf{x})=\ln \mathbf{x}$ centered at $\mathrm{x}=3$.

Solution:
Since $f(x)=\ln x$, we find that:
$f^{\prime}(x)=x^{-1}$
$f^{\prime \prime}(x)=-x^{-2}$
$f^{(3)}(x)=2!x^{-3}$
$f^{(4)}(x)=-3!x^{-4}$
$f^{(5)}(x)=4!x^{-5}$

Hence $f(3)=\ln 3, f^{\prime}(3)=3^{-1}, f^{\prime \prime}(3)=-3^{-2}, f^{(3)}(3)=2!3^{-3}, f^{(4)}(3)=-3!3^{-4}$ and
$f^{(5)}(3)=4!3^{-5}$.
So the $5^{\text {th }}$ order Taylor polynomial of $\ln x$ centered at $x=3$ is:

$$
\begin{aligned}
& P_{5}(x)=\ln 3+\frac{1}{3(1!)}(x-3)-\frac{1}{3^{2}(2)}(x-3)^{2}+\frac{1}{3^{3}(3)}(x-3)^{3}-\frac{1}{3^{4}(4)}(x-3)^{4} \\
& +\frac{1}{3^{5}(5)}(x-3)^{5}
\end{aligned}
$$

2. Without differentiating, find a Maclaurin polynomial for the function $\mathbf{h}(\mathbf{x})=\arctan (4 \mathbf{x})$ that has exactly four non-zero terms.
Hint: Begin with the expansion of $1 /(1-t)$ and then replace t by $-t^{2}$.

Solution:

$$
\frac{1}{1-t}=1+t+t^{2}+t^{3}+t^{4}+\ldots
$$

Replacing t by t^{2} :

$$
\frac{1}{1+t^{2}}=1-t^{2}+t^{4}-t^{6}+t^{8}-\ldots
$$

Integration produces:

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\ldots
$$

Thus, the first four non-zero terms of the Maclaurin expansion are:

$$
4 x-\frac{4^{3}}{3} x^{3}+\frac{4^{5}}{5} x^{5}-\frac{4^{7}}{7} x^{7}
$$

3. Find the $2^{\text {nd }}$ order Maclaurin polynomial of $G(\mathbf{x})=\sec \mathbf{3 x}$.

Solution:

Since $G(x)=\sec (3 x)$, we have:
$G^{\prime}(x)=3 \sec (3 x) \tan (3 x)$
$G^{\prime \prime}(x)=3\left\{\sec (3 x) \sec ^{2}(3 x) 3+\tan (3 x) 3 \sec (3 x) \tan (3 x)\right\}=9\left\{\sec ^{3}(3 x)+\sec (3 x)\right.$
$\left.\tan ^{2}(3 x)\right\}$
Hence $G(0)=1, G^{\prime}(0)=0$, and $G^{\prime \prime}(0)=9$.
So the $2^{\text {nd }}$ order Maclaurin polynomial of $\sec (3 x)$ is

$$
P_{2}(x)=1+(9 / 2!) x^{2}=1+(9 / 2) x^{2}
$$

4. Find the $4^{\text {th }}$ order Taylor polynomial centered at $\mathbf{x}=\mathbf{1}$ of the function $\mathbf{F}(\mathbf{x})=(\mathbf{x}-4)^{4}$.

Solution:

Note that $F(1)=81, F^{\prime}(1)=-108, F^{\prime \prime}(1)=108, F^{\prime \prime \prime}(1)=-72$ and $F^{(4)}(1)=24$.
Thus the $4^{\text {th }}$ degree Taylor polynomial is:

$$
\begin{aligned}
& 81-\frac{108}{1!}(x-1)+\frac{108}{2!}(x-1)^{2}-\frac{72}{3!}(x-1)^{3}+\frac{24}{4!}(x-1)^{4}= \\
& 81-108(x-1)+54(x-1)^{2}-12(x-1)^{3}+(x-1)^{4}
\end{aligned}
$$

5. Suppose that the Maclaurin series of $\mathbf{g}(\mathbf{x})=\operatorname{arcsinh}(\mathbf{x})$ is given by:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{4^{n}(n!)^{2}(2 n+1)} x^{2 n+1}
$$

Find $\mathrm{g}^{(5)}(0)$.

Solution:

We know that the coefficient of x^{5} in the Maclaurin series expansion is $g^{(5)}(0) / 5$!
Now the exponent is 5 when $2 n+1=5$. That is, when $n=2$.
So the coefficient of x^{5} in the given series expansion is $\left.(-1)^{2}(4!) /\left\{4^{2}\right)(2!)^{2}(5)\right\}$ which reduces to $3 / 40$. Setting $3 / 40=g^{(5)}(0) / 5$!, we obtain: $g^{(5)}(0)=3(5!) / 40=9$

EXTR A CREDIT

Express the following integral as an infinite series.

$$
\int_{0}^{x} \frac{1-\cos t}{t} d t
$$

Solution:

$$
\begin{aligned}
& \int_{0}^{x} \frac{1-\cos t}{t} d t=\int_{0}^{x} \frac{1-\left(1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\ldots\right)}{t} d t=\int_{0}^{x} \frac{\frac{t^{2}}{2!}-\frac{t^{4}}{4!}+\frac{t^{6}}{6!}-\ldots}{t} d t= \\
& \int_{0}^{x}\left(\frac{t}{2!}-\frac{t^{3}}{4!}+\frac{t^{5}}{6!}-\ldots\right) d t=\frac{x^{2}}{2(2!)}-\frac{x^{4}}{4(4!)}+\frac{x^{6}}{6(6!)}-\ldots
\end{aligned}
$$

