
MATH 162     Solutions: TEST I           
 

 

 

1.   Consider the region bounded by the curves y = 3x + 4 and y = x
2
.  Find the volume of 

the solid generated by revolving this region about the line x = 4. Express your answer as a 

Riemann integral. 

 

Using shells, we obtain: 
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2.   Evaluate    dxxx 3cosh  

 

 

Using integration by parts, we let f(x) = x and g(x) = cosh 3x.  Then f (x) = 1 and g(x) = 

(sinh 3x)/3.   Thus 
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3.    Evaluate  dxee xx
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Let us substitute u = e
x
 + 2013.   Thus du = e

x
 dx, and so: 
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4.    For each of the following statements answer True or False.  Briefly justify each 

answer! 

 

(a)    x3
 ln x + x + 1 = o(x

4
) 

True since  (x
3
 ln x + x + 1) / x

4
  → 0  as x→∞. 

 

(b)     sinh x = O(cosh x) 

True since  sinh x / cosh x  =  (e
x
 – e

-x
)/ (e

x
 + e

-x
)  → 1  as x→∞. 

 

(c)    )(
20125

99ln5)1(3 8

35

523

xo
xxx

xxxx





 

 

False since: 
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5.     Consider the region in the first quadrant bounded by the curve y = cos x, 0 ≤ x ≤ /2, 

and the x and y-axes.  This region is rotated about the axis y = 9.  Express the volume of 

this solid of revolution as a Riemann integral. 

 

We will use washers to solve this problem.  Fix x between 0 and /2.   The inner radius is 9 

– cos x; the outer radius is 9.  Hence: 
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6.    Evaluate    dxxarcsin  
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Integration by parts:  Let  f(x) = arc sin x and g(x) = 1.   Then f (x) = 1/(1–x
2
)

1/2
 and g(x) 

= x.  So  
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7.    The base of a solid is a disk of radius 5.  Each cross section cut by a plane 

perpendicular to a diameter is an isosceles right triangle with hypotenuse on the base.  

Express the volume of the solid as a Riemann integral.  You need not evaluate the integral. 
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The equation of this circle is x
2
 + y

2
 = 25.  Let us assume that the diameter referred to in 

the question lies on the x-axis.  Then, taking a typical slice at x (in the interval [-5, 5], with 

thickness ∆x, the volume of the corresponding slice (an isosceles right triangle with 

hypotenuse  2y = 2 Sqrt(25 - x
2
) is given by 

 ∆V=  ½ y(2y) ∆x =(25 - x
2
) ∆x.  Thus:   
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8.   Let S be the surface of revolution obtained by rotating the curve   
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about the line x = 9.    Find a Riemann integral that expresses the surface area of this 

region.  (Do not evaluate the integral.) 
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9.   Consider the triangle with vertices (0, 2), (6, 2), (3, 4).  This triangle is rotated about 

the axis y = -3.   Express the volume of this solid of revolution as a Riemann integral.  Do 

not evaluate. 
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The equations of the two non-horizontal sides are:   y = (2/3)x + 2 and y = (-2/3)x + 6.   

Solving for x, we obtain:  x = (3/2) (y – 2) and x = -(3/2) (y – 6), respectively. 

Using shells, the radius of the shell at y is y – (-3) = y + 3 and the length of the shell is -

(3/2) (y – 6) – ((3/2) (y – 2)) = 12 – 3y.  Hence: 
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10.    A conical tank with height 25 meters and radius 5 meters is filled with a fluid of 

density kilograms per cubic meter.  How much work must be done to pump all the fluid 

over the top rim of the tank?   Do not evaluate the integral. 
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11.   Assume that m and n are positive integers.  Using integration by parts, derive the 

following reduction formula: 
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Let f(x) = (ln x)
n
 and g(x) = x

m
.  Thus f(x) = n(ln x)

n-1
(1/x)   and g(x) = x

m+1
/(m+1).  Thus: 
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12.    The curve given by 51)(ln1)(  tforettyandtttx t
 is rotated 

about the y-axis.  Compute the area of the generated surface.   Do not evaluate your 

integral. 
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Extra Credit:    Evaluate the following integral: 

dx
x

xln
  

 

 

Using the integration by parts formula: 

 

Let f(x) = ln x and g(x) = x
 -1/2

.   Then f(x)=1/x and g(x) =2 x
1/2

.  Hence:   
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