## MATH 162

## SOLUTIONS: TEST I

1. Consider the region bounded by the curves $y=3 x+4$ and $y=x^{2}$. Find the volume of the solid generated by revolving this region about the line $\mathrm{x}=4$. Express your answer as a Riemann integral.

Using shells, we obtain:

$$
V=2 \pi \int_{-1}^{4}(4-x)\left(3 x+4-x^{2}\right) d x
$$

2. Evaluate $\int x \cosh (3 x) d x$

Using integration by parts, we let $f(x)=x$ and $g^{\prime}(x)=\cosh 3 x$. Then $f^{\prime}(x)=1$ and $g(x)=$ $(\sinh 3 x) / 3$. Thus

$$
\int x \cosh (3 x) d x=\frac{x \sinh (3 x)}{3}-\int \frac{\sinh (3 x)}{3} d x=\frac{x \sinh (3 x)}{3}-\frac{\cosh (3 x)}{9}+C
$$

3. Evaluate $\int e^{x} \ln \left(e^{x}+2013\right) d x$

Let us substitute $u=e^{x}+2013$. Thus $d u=e^{x} d x$, and so:
$\int e^{x} \ln \left(e^{x}+2013\right) d x=\int \ln u d u=u \ln u-u+C=\left(e^{x}+2013\right) \ln \left(e^{x}+2013\right)-e^{x}+2013+$
$\left(e^{x}+2013\right) \ln \left(e^{x}+2013\right)-e^{x}+C$
4. For each of the following statements answer True or False. Briefly justify each answer!
(a) $\mathrm{x}^{3} \ln \mathrm{x}+\mathrm{x}+1=o\left(\mathrm{x}^{4}\right)$

True since $\left(x^{3} \ln x+x+1\right) / x^{4} \rightarrow 0$ as $x \rightarrow \infty$.
(b) $\quad \sinh \mathrm{x}=O(\cosh \mathrm{x})$

True since $\sinh x / \cosh x=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right) \rightarrow 1$ as $x \rightarrow \infty$.
(c) $\frac{3 x^{3}\left(x^{2}+1\right)^{5}+5 x \ln x+99}{x^{5}+5 x^{3}+x+2012}=o\left(x^{8}\right)$

False since:

$$
\frac{\frac{3 x^{3}\left(x^{2}+1\right)^{5}+5 x \ln x+99}{x^{5}+5 x^{3}+x+2010}}{x^{8}}=\frac{3 x^{3}\left(x^{2}+1\right)^{5}+5 x \ln x+99}{x^{13}+5 x^{11}+x^{9}+2010 x^{8}} \rightarrow 3 \text { as } x \rightarrow \infty
$$

5. Consider the region in the first quadrant bounded by the curve $y=\cos x, 0 \leq x \leq \pi / 2$, and the x and y -axes. This region is rotated about the axis $\mathrm{y}=9$. Express the volume of this solid of revolution as a Riemann integral.

We will use washers to solve this problem. Fix $x$ between 0 and $\pi / 2$. The inner radius is 9 $-\cos x$; the outer radius is 9 . Hence:

$$
V=\pi \int_{0}^{\pi / 2}\left(9^{2}-(9-\cos x)^{2}\right) d x
$$

6. Evaluate $\int \arcsin x d x$

Integration by parts: Let $f(x)=\arcsin x$ and $g^{\prime}(x)=1$. Then $f^{\prime}(x)=1 /\left(1-x^{2}\right)^{1 / 2}$ and $g(x)$ $=x$. So

$$
\int \arcsin x d x=x \arcsin x-\int \frac{x}{\sqrt{1-x^{2}}} d x=x \arcsin x+\sqrt{1-x^{2}}+C
$$

7. The base of a solid is a disk of radius 5. Each cross section cut by a plane perpendicular to a diameter is an isosceles right triangle with hypotenuse on the base.
Express the volume of the solid as a Riemann integral. You need not evaluate the integral.


The equation of this circle is $x^{2}+y^{2}=25$. Let us assume that the diameter referred to in the question lies on the $x$-axis. Then, taking a typical slice at $x$ (in the interval [-5, 5], with thickness $\Delta x$, the volume of the corresponding slice (an isosceles right triangle with hypotenuse $2 y=2 \operatorname{Sqrt}\left(25-x^{2}\right)$ is given by
$\Delta V=1 / 2 y(2 y) \Delta x=\left(25-x^{2}\right) \Delta x$. Thus:

$$
V=\int_{-5}^{5}\left(25-x^{2}\right) d x
$$

8. Let $S$ be the surface of revolution obtained by rotating the curve

$$
y=e^{-2 x^{2}}, \quad 0 \leq x \leq 3
$$

about the line $\mathrm{x}=9$. Find a Riemann integral that expresses the surface area of this region. (Do not evaluate the integral.)


$$
S=\int_{x=0}^{3} 2 \pi(9-x) d s=\int_{0}^{3} 2 \pi(9-x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=
$$

$$
\int_{0}^{3} 2 \pi(9-x) \sqrt{1+\left(-4 x e^{-2 x^{2}}\right)^{2}} d x=\int_{0}^{3} 2 \pi(9-x) \sqrt{1+16 x^{2} e^{-4 x^{2}}} d x
$$

9. Consider the triangle with vertices $(0,2),(6,2),(3,4)$. This triangle is rotated about the axis $y=-3$. Express the volume of this solid of revolution as a Riemann integral. Do not evaluate.


The equations of the two non-horizontal sides are: $y=(2 / 3) x+2$ and $y=(-2 / 3) x+6$. Solving for $x$, we obtain: $x=(3 / 2)(y-2)$ and $x=-(3 / 2)(y-6)$, respectively. Using shells, the radius of the shell at $y$ is $y-(-3)=y+3$ and the length of the shell is $(3 / 2)(y-6)-((3 / 2)(y-2))=12-3 y$. Hence:

$$
V=\int_{2}^{6} 2 \pi(y-(-3))(12-3 y) d y=6 \pi \int_{2}^{6}(y+3)(4-y) d y
$$

10. A conical tank with height 25 meters and radius 5 meters is filled with a fluid of density $\rho$ kilograms per cubic meter. How much work must be done to pump all the fluid over the top rim of the tank? Do not evaluate the integral.


$$
W=\int_{0}^{25} \rho \pi\left(\frac{y}{5}\right)^{2}(25-y) d y \text { joules }
$$

11. Assume that $m$ and $n$ are positive integers. Using integration by parts, derive the following reduction formula:

$$
\int x^{m}(\ln x)^{n} d x=\frac{x^{m+1}(\ln x)^{n}}{m+1}-\frac{n}{m+1} \int x^{m}(\ln x)^{n-1} d x
$$

Let $f(x)=(\ln x)^{n}$ and $g^{\prime}(x)=x^{m}$.Thus $f^{\prime}(x)=n(\ln x)^{n-1}(1 / x)$ and $g(x)=x^{m+1} /(m+1)$. Thus:

$$
\begin{aligned}
& \int x^{m}(\ln x)^{n} d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x=(\ln x)^{n} \frac{x^{m+1}}{m+1}-\int \frac{n(\ln x)^{n-1}}{x} \frac{x^{m+1}}{m+1} d x= \\
& \frac{x^{m+1}(\ln x)^{n}}{m+1}-\frac{n}{m+1} \int x^{m}(\ln x)^{n-1} d x
\end{aligned}
$$

12. The curve given by $x(t)=1+t \ln t$ and $y(t)=t+e^{t}$ for $1 \leq t \leq 5$ is rotated about the y -axis. Compute the area of the generated surface. Do not evaluate your integral.

$$
S=\int_{t=1}^{5} 2 \pi x(t) d s=2 \pi \int_{1}^{5}(1+t \ln t) \sqrt{(1+\ln t)^{2}+\left(1+e^{t}\right)^{2}} d t
$$

EXTR CREDIT: Evaluate the following integral:

$$
\int \frac{\ln x}{\sqrt{x}} d x
$$

Using the integration by parts formula:
Let $f(x)=\ln x$ and $g^{\prime}(x)=x^{-1 / 2}$. Then $f^{\prime}(x)=1 / x$ and $g(x)=2 x^{1 / 2}$. Hence:

$$
\begin{aligned}
& \int \frac{\ln x}{\sqrt{x}} d x=2 x^{\frac{1}{2}} \ln x-\int \frac{2 x^{\frac{1}{2}}}{x} d x=2 x^{\frac{1}{2}} \ln x-2 \int x^{-\frac{1}{2}} d x= \\
& 2 \sqrt{x} \ln x-4 \sqrt{x}+C
\end{aligned}
$$

