
Math 162  Solutions:  TEST II         
 

  

PART I   (Answer all four problems.) 

 

1.   Compute the value of the following improper integral: 
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2.     Consider the following recursively defined sequence: 

c1 =  1, 
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(a)   Find the values of  c2 , c3  and c4. 
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Setting n = 1: 
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25.3
4

13
3

4

1
3

1

2

3 
c

c   

Setting n = 3: 
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(b)    Assuming that the limit of cn as n   exists, find its exact value. 

 

 

Solution: 

 

Assume that L = lim cn exists.  Then: 
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Multiplying both sides by L yields:  L
2
 = 1 + 3L.  So:   L

2
 – 3L – 1 = 0.  Using 

the quadratic formula: 
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We reject the negative root, since c1 > 0 and all subsequent terms of the 

sequence are also positive (reasoning inductively). 
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Thus, if lim cn exists, this limit must be approximately 3.3027. 

 

 

3.   Determine convergence or divergence of the following improper integral.   

Justify your answer:     
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Thus our integral diverges. 

 

 
 

4.    Determine convergence or divergence of the following improper integral.   

Justify your answer:     
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Since x
3
 > x

4
 when 0 < x <1: 
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Now we know that dx
x
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 diverges, from the p-test for integrals of the 

second kind. Thus, invoking the Comparison Test, we find that  
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PART II     Select any 5 of the following 6 sequences.  For each selected 

sequence, determine convergence or divergence.  Briefly justify each answer.  In 

the case of convergence, find the limit.   Calculator results will not earn full 

credit.  (You may answer all 6 to earn extra credit.)    
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Solution:   Let h = 1/(13n).  Then n = 1/(13h) and as n  , h  0.  Hence: 
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Hence the sequence an converges to 1/13. 
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2.          
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Solution:   Note that: 
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Hence the sequence bn converges to e
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Rationalizing the “numerator” yields: 
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Hence the sequence cn converges to 13. 
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PART III     Select any 5 of the following 6 series.  For each selected series, 

determine convergence or divergence.   Justify each answer.  (You may answer 

all 6 to earn extra credit.) 

 

1.     
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Solution:  This series is telescoping.  Consider the sequence of partial sums: 
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from which we infer that  sn = 1/13 – 1/(13+n)  0 as n  .  Thus the sum of 

our series is 1/13. 
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2.    
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Solution:   Applying the ratio test 
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we find that the series converges since r < 1. 
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for Divergence to conclude that our series diverges. 
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Solution:   Observe that 13.13131313… = 13(1 + 10
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 + 10
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Ignoring the factor of 13 for the moment, we have a geometric series with ratio R 

= 0.01.  Hence  
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Solution:  Using the Comparison Test: 
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Using the p-test for the larger series, we see that our series converges.   
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Solution:   Consider the following inequality: 
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Using the p-test, we see that the smaller series diverges and hence our series 

diverges as well. 

 

PART IV    Select any five of the following six problems.  You may answer all 

six for extra credit.   For each improper integral below, determine convergence or 

divergence.  Justify each answer! 
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Since  
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Since  ln x < x , we have: 
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Thus, invoking both the p-test and the Comparison Test, our original 

integral converges.   
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Observe that 
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Thus, invoking the Comparison Test, our original integral 

converges.   
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Observe that 
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Thus, invoking the Comparison Test, our original integral 

converges.   
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Thus, invoking the Comparison Test, our original integral diverges.   
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Thus the original integral diverges.   

 

  

 

 

PART V    Select any 4 of the following 5 problems.  You may answer all five 

for extra credit.   For each numerical series below, determine convergence or 

divergence.   Justify each answer.   
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Solution:  Applying the ratio test to this positive series: 
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Since r < 1, we conclude that our positive series converges.   
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Solution:  Applying the n
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 root test to this positive series: 
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Since  < 1, we conclude that our positive series converges.   
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Applying the ratio test to this positive series: 
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We may invoke the n
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 Term Test for Divergence to conclude that our 

original series diverges.  
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can invoke the Comparison Test to conclude that our series diverges.   

 


