WORKSHEET XV

OPERATIONS ON POWER SERIES

1. (a) Consider the power series $f(x)=1 /(1-x)=1+x+x^{2}+x^{3}+\ldots$ What is its interval of convergence?
(b) Find the series for $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
2. Using the power series obtained in $1(\mathrm{~b})$ for $f^{\prime}(x)$, determine the sum of the series $\sum_{n=1}^{\infty} \frac{n}{3^{n}}$
3. The series

$$
\sin x=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} / 9!-x^{11} / 11!+\ldots
$$

converges to $\sin \mathrm{x}$ for all real x .
(a) Find the first six terms of a series for $\cos x$. For which values should the series converge?
(b) By replacing x by 2 x in the series for $\sin \mathrm{x}$, find a series that converges to $\sin 2 \mathrm{x}$ for all x.
(c) Using series multiplication, find a series that converges to $2 \sin \mathrm{x} \cos \mathrm{x}$.
4. (a) On which interval does the series $1 /(1+t)=1-t+t^{2}-t^{3}+t^{4}-t^{5}+\ldots$ converge?
(b) Integrating both sides over the interval [$0, \mathrm{x}$], find the first six terms of a series that converges to $\ln (1+x)$.
5. The series $\mathrm{e}^{\mathrm{x}}=1+\mathrm{x}+\mathrm{x}^{2} / 2!+\mathrm{x}^{3} / 3!+\mathrm{x}^{4} / 4!+\mathrm{x}^{5} / 5!+\ldots$ converges to e^{x} for all real x.
(a) Find a series for $(d / d x) e^{x}$.
(b) Find a series for $\int e^{x} d x$
(c) In the series for e^{x}, replace x by -x to find a series expansion of $\mathrm{e}^{-\mathrm{x}}$.
(d) In (c), replace x by x^{2} to find a series expansion of $e^{-x^{2}}$.
6. (a) Beginning with the series for $1 /\left(1+x^{2}\right)$, find a series expansion of $\arctan x$.
(b) Find a series expansion for $\int \frac{\arctan x}{x} d x$.
7. Using a series representation for $\sin 3 \mathrm{x}$, find values of r and s for which

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 3 x}{x^{3}}+\frac{r}{x^{2}}+s\right)=0
$$

I used to love mathematics for its own sake, and I still do, because it allows for no hypocrisy and no vagueness....

- Stendhal, The Life of Henri Brulard

