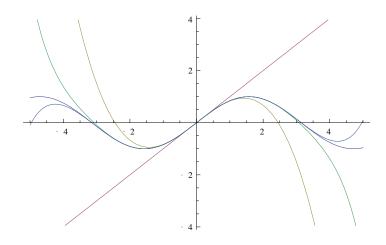
WORKSHEET XVI

TAYLOR POLYNOMIALS, TAYLOR SERIES



- 1. Find the 5^{th} degree Maclaurin polynomial of e^{3x} .
- 2. Find the 4^{th} degree Maclaurin polynomial of $(1-x) e^x$.
- 3. Find the 3^{rd} degree Taylor polynomial of $1/(1 + x^2)$ centered at c = 1.
- 4. Find the 5th degree Maclaurin polynomial of $(3x \sin(3x))/x^3$.
- 5. Find the first four *non-zero* terms of the Maclaurin series of $\exp(x^2 + x)$.
- 6. Write the Maclaurin series expansion for $x/(1 + x^2)$ and for $\ln(1 + x^2)$. Find the interval of convergence for each series. What is the relationship between these two series?
- 7. Using an appropriate power series expansion, compute Σ n/7ⁿ. (*Hint:* Differentiate an appropriate geometric series.)
- 8. Find the Maclaurin series of each of the functions: 2/(3-x), 5/(4-x), and (23-7x)/[(3-x)(4-x)].
- 9. Find the 99^{th} derivative of 1/(a bx) by using an appropriate power series.

- 10. Find the *binomial expansion* of $(1 + x)^{-4}$. What is its radius of convergence?
- 11. Find the Maclaurin series expansion of $1/(1 + x^2)^{1/2}$.
- 12. Find the 23^{rd} derivative of $1/(1 + x^2)^{1/2}$.
- 13. Using an appropriate Maclaurin series, evaluate the limit of (sin $(x-x)/x^3$ as $(x-x)/x^3$ as $(x-x)/x^3$ as $(x-x)/x^3$ as $(x-x)/x^3$
- 14. Evaluate the limit of $(\sin x \tan x)/x^3$ as $x \to 0$ without using l'Hôpital's rule.
- 15. Evaluate the limit of $(\ln x)/(x-1)$ as $x \to 1$ without using l'Hôpital's rule.
- 16. Evaluate the limit of $1/(\sin x) 1/x$ as $x \to 0$ without using l'Hôpital's rule.
- 17. Evaluate the limit of $(\sin x x)/(\tan x x)$ as $x \to 0$ without using l'Hôpital's rule.
- 18. Evaluate the limit of $\ln x / (e^x e)$ as $x \to 1$ without using l'Hôpital's rule. (Hint: Let t = x 1.)
- 19. Find $\lim_{x\to 0} \frac{e^{x^2}-1}{\cosh(3x)-1}$ without using l'Hôpital's rule.
- 20. State Taylor's inequality. Using this inequality, prove that the Maclaurin series of e^x , $\sin x$, $\cos x$, and $\cosh x$ each converge to the given function everywhere.

<u>Colin Maclaurin</u> (1698 – 1746)

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE