WORKSHEET XVII

COMPLEX NUMBERS; EULER'S FORMUL A

1. Let $\mathrm{z}=2+3 \mathrm{i}$ and $\mathrm{w}=6-\mathrm{i}$. Compute and express each of the following in the form $\mathrm{a}+\mathrm{bi}$. Plot each number in the complex plane.
(a) $\mathrm{Z}+\mathrm{W}$
(b) 5 z
(c) $\mathrm{Z}-3 \mathrm{w}$
(d) ZW
(e) $1 / z$
(f) z / w
(g) \bar{z}
(h) $2 z^{2}+1 / w$
2. Find the modulus and argument of each of the following:
(a) $1+\mathrm{i}$
(b) $-1-\mathrm{i}$
(c) $1+2 \mathrm{i}$
(d) $3+5 i$
3. Justify Euler's formula using power series.
4. Explain how de Moivre's theorem is a special case of Euler's formula.
5. Express $\mathrm{z}=1+\mathrm{i}$ in polar form, $\mathrm{re}^{\mathrm{i} \theta}$. What is the modulus of z ? What is its argument?
6. Express each of the following in the form $a+b i$
(a) $\mathrm{e}^{\pi \mathrm{i}}$
(b) i^{i}
(c) $(1+i)^{100}$
7. Using de Moivre's theorem, express $\sin 3 \theta$ in terms of $\sin \theta$ and $\cos \theta$.
8. Using de Moivre's theorem, express $\cos 5 \theta$ in terms of $\sin \theta$ and $\cos \theta$.
9. Find the four fourth roots of -1 .
10. Find the three cube roots of 8 i .
11. Find the five fifth roots of 1 .
12. Using power series, determine a relationship between $\cosh \mathrm{x}$ and $\cos \mathrm{x}$ and between $\sinh \mathrm{x}$ and $\sin \mathrm{x}$.

The imaginary number is a fine and wonderful resource of the human spirit, almost an amphibian between being and not being.

- Gottfried Wilhelm Leibniz (1646-1716)

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE

