WORKSHEET XVII

COMPLEX NUMBERS; EULER'S FORMULA

1. Let z = 2 + 3i and w = 6 - i. Compute and express each of the following in the form a + bi. Plot each number in the complex plane.

- (a) z + w
- (b) 5z
- (c) z 3w
- (d) zw
- (e) 1/z
- (f) z/w
- (g) *z*
- (h) $2z^2 + 1/w$
- 2. Find the *modulus* and *argument* of each of the following:

(a) 1 + i

- (b) -1 i
 (c) 1 + 2i
 (d) 3 + 5i
- 3. Justify Euler's formula using power series.
- 4. Explain how de Moivre's theorem is a special case of Euler's formula.
- 5. Express z = 1 + i in polar form, $re^{i\theta}$. What is the *modulus* of z? What is its *argument*?
- 6. Express each of the following in the form a + bi
 - (a) $e^{\pi i}$ (b) i^{i} (c) $(1 + i)^{100}$
- 7. Using de Moivre's theorem, express sin 3 θ in terms of sin θ and cos θ .
- 8. Using de Moivre's theorem, express $\cos 5\theta$ in terms of $\sin \theta$ and $\cos \theta$.
- 9. Find the four fourth roots of -1.
- 10. Find the three cube roots of 8i.
- 11. Find the five fifth roots of 1.

12. Using power series, determine a relationship between cosh x and cos x and between sinh x and sin x.

The imaginary number is a fine and wonderful resource of the human spirit, almost an amphibian between being and not being. - Gottfried Wilhelm Leibniz (1646-1716)

 COURSE HOME PAGE
 DEPARTMENT HOME PAGE
 LOYOLA HOME PAGE