WORKSHEET XXII

SEPARABLE DIFFERENTIAL EQUATIONS,
$1^{\text {sT }}$ ORDER LINE AR DIFFERENTIAL EQUATIONS,

AND DIRECTION FIELDS

I Solve each of the following separable differential equations.

1. $d y / d x=y(1-y)$
2. $x d y / d x=2(y-4)$
3. $\frac{d y}{d x}=\frac{x^{2} y-4 y}{x+2}$
4. $\frac{d y}{d x}=x e^{x^{2}-\ln \left(y^{2}\right)}$
5. $\operatorname{dy} / \mathrm{dx}=(\mathrm{x}+\mathrm{y}) / \mathrm{x} \quad($ Hint: Let $\mathrm{v}=\mathrm{y} / \mathrm{x}$.)
6. $\frac{d}{d x}\left(x e^{x} y\right)=2 e^{2 x}$
7. $\left(1+x^{2}\right) d y / d x=\arctan x$
8. $\frac{d y}{d x}=\frac{y-1}{x y}$
9. $\mathrm{xyy}^{\prime}=(\mathrm{x}+\mathrm{a})(\mathrm{y}+\mathrm{b})$ where a and b are constants.
10. $x \frac{d y}{d x}=\left(1-2 x^{2}\right) \tan y$
11. $L \frac{d i}{d t}+R i=0 \quad$ where L and R are constants.
12. $x \frac{d y}{d x}=y+x^{3} \tan \frac{y}{x} \quad$ (Hint: Let $\mathrm{v}=\mathrm{y} / \mathrm{x}$.)
13. $\mathrm{dP} / \mathrm{dt}=\mathrm{cP}(1-\mathrm{P} / \mathrm{K}) \quad$ (the logistic equation)

II Solve each of the following initial value problems.

1. $d y / d x=6 y^{2} x, y(1)=1 / 25$
2. $\frac{d y}{d x}=\frac{3 x^{2}+4 x-4}{2 y-4}, \quad y(1)=3$
3. $\frac{d y}{d x}=\frac{x y^{3}}{\sqrt{1+x^{2}}}, \quad y(0)=1$
4. $d y / d x=e^{y}(2 x-4), \quad y(5)=0$
5. $e^{\frac{d y}{d x}}=x^{4}, \quad y(1)=1$

III By selecting an appropriate integrating factor, solve each of the following first-order linear differential equations:

1. $x(d y / x)+y=x^{3}, x>0$
2. $x(d y / d x)+y=e^{x}, x>0$
3. $e^{x}(d y / d x)+2 e^{x} y=1$
4. $x(d y / d x)+3 y=(\sin x) / x^{2}, x>0$
5. $d y / d x+(\tan x) y=\cos ^{2} x,-\pi / 2<x<\pi / 2$
6. $x(d y / d x)+2 y=1-1 / x, x>0$
7. $(\mathrm{t}-1)^{3}(\mathrm{ds} / \mathrm{dt})+4(\mathrm{t}-1)^{2} \mathrm{~s}=\mathrm{t}+1, \mathrm{t}>1$

IV Draw isoclines and direction fields for each of the following equations. Sketch some of the integral curves.

1. $d y / d x=x^{2}-y$
2. $d y / d x=-x^{2}$
3. $d y / d x=x-2 y$
4. $d y / d x=1 / y$
5. $d y / d x=x y$

Often there is little resemblance between a differential equation and its solution. Who would suppose that an expression as simple as $d y / d x=1 /\left(a^{2}-x^{2}\right)$ could be transformed into $y=(1 / 2 a) \ln$ $(a+x) /(a-x)+C$? This resembles the transformation of a chrysalis into a butterfly!

- Silvanus P. Thompson

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE

