WORKSHEET III

DISKS AND WASHERS

1. Find the volume of the solid of revolution obtained by rotating the region bounded by $y=x^{2}, y=0, x=2$ about the y-axis.
2. Find the volume of the solid of revolution obtained by rotating the region bounded by $\mathrm{y}=\sec \mathrm{x}, \mathrm{y}=0, \mathrm{x}=-\pi / 4, \mathrm{x}=\pi / 4$, about the x -axis.
3. Find the volume of the solid of revolution obtained by rotating the region bounded by $\mathrm{y}=\mathrm{x}, \mathrm{y}=1, \mathrm{x}=0$, about the x -axis.
4. Find the volume of the solid of revolution obtained by rotating the region bounded by $4-x^{2}, y=2-x$, about the x-axis.
5. Find the volume of the solid of revolution obtained by rotating the region enclosed by the triangle with vertices $(1,0),(2,1)$, and $(1,1)$, about the y-axis.
6. Find the volume of the solid of revolution obtained by rotating the region in the first quadrant bounded above by $y=x^{2}$, below by the x -axis, and on the right by the line $\mathrm{x}=1$, about the line $\mathrm{x}=-1$.
7. Find the volume of the solid of revolution obtained by rotating the region in the second quadrant bounded above by the curve $y=-x^{3}$, below by the x-axis, and on the left by the line $x=-$ 1 , about the line $\mathrm{x}=-2$.

SHELLS

1. Find the volume of the solid obtained by rotating about the the y -axis the region bounded by $\mathrm{y}=2 \mathrm{x}^{2}-\mathrm{x}^{3}$ and $\mathrm{y}=0$.
2. Find the volume of the solid obtained by rotating about the y axis the region between $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{2}$.
3. Use shells to find the volume of the solid obtained by rotating about the x -axis the region under the curve $\mathrm{y}=\mathrm{x}^{1 / 2}$ from 0 to 1 .
4. Find the volume of the solid obtained by rotating the region bounded by $\mathrm{y}=\mathrm{x}-\mathrm{x}^{2}$ and $\mathrm{y}=0$ about the line $\mathrm{x}=2$.
5. Find the volume of the solid obtained by rotating the region bounded $\mathrm{x}=1+(\mathrm{y}-2)^{2}$ and $\mathrm{x}=2$ about the x -axis.
6. Find the volume of the solid obtained by rotating the region bounded by $\mathrm{y}=4 \mathrm{x}-\mathrm{x}^{2}$ and $\mathrm{y}=3$ about the axis $\mathrm{x}=1$.
7. Each of following integrals represents the volume of a solid.

Describe the solid:
(a) $\int_{0}^{3} 2 \pi x^{5} d x$
(b) $\int_{0}^{1} 2 \pi(3-y)\left(1-y^{2}\right) d y$
(c) $2 \pi \int_{0}^{2} \frac{y}{1+y^{2}} d y$

