WORKSHEET Y

PARAMETRIC EQUATIONS - A BRIEF INTRODUCTION

1. Sketch the curve $\mathrm{x}(\mathrm{t})=3 \mathrm{t}, \mathrm{y}(\mathrm{t})=\mathrm{t}^{2}+1$. Express y as a function of x.
2. Describe the parameterized curve $x(t)=3 \cos t, y(t)=4$ $\cos \mathrm{t}, 0 \leq \mathrm{t} \leq 2 \pi$.

What is the relationship between the given curve and each of the following?
(a) $x(t)=-3 \cos t, y(t)=4 \cos t, 0 \leq t \leq 2 \pi$.
(b) $\quad \mathrm{x}(\mathrm{t})=3 \cos 2 \mathrm{t}, \mathrm{y}(\mathrm{t})=4 \cos 2 \mathrm{t}, 0 \leq \mathrm{t} \leq 2 \pi$.
(c) $\mathrm{x}(\mathrm{t})=1-3 \cos 2 \mathrm{t}, \mathrm{y}(\mathrm{t})=1-4 \cos 2 \mathrm{t}, 0 \leq \mathrm{t} \leq$ 2π.
3. Show that the following is a parameterization of the cycloid: $\quad \mathrm{x}(\theta)=\mathrm{a}(\theta-\sin \theta), \mathrm{y}(\theta)=\mathrm{a}(1-\cos \theta), \quad-\infty<\theta$ $<\infty$.
4. Show that $x=a \cos t+h, y=b \sin t+k, 0 \leq t \leq 2 \pi$, is a parametric equation of an ellipse with center at (h, k) and axes of length 2 a and 2 b .
5. Find a parameterization of the straight line $y=3 x+4$.
6. Find a parameterization of the straight line segment joining the points $\mathrm{P}=(3,5)$ to $\mathrm{Q}=(7,11)$.
7. Find a parameterization of the curve $y=x^{2}$ from $P=(-1,1)$ to $\mathrm{Q}=(4,16)$.
8. Generalize problem 7 for any curve of the form $y=f(x)$ from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$.

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE

