WORKSHEET VIII

LITTLE OH AND BIG OH

Suppose that $\mathrm{f}(\mathrm{x}) \rightarrow \infty$ and $\mathrm{g}(\mathrm{x}) \rightarrow \infty$ as $\mathrm{x} \rightarrow \infty$. We say that " f is of smaller order than $g^{\prime \prime}$ if $\frac{f(x)}{g(x)} \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$. In this case we write $\mathrm{f}=$ $o(\mathrm{~g})$.

Assume that f and g are each positive for large x. We say that " f is at most the order of g " if there is a positive integer M for which $\frac{f(x)}{g(x)} \leq M$ for large x . In this case we write $\mathrm{f}=O(\mathrm{~g})$.

Determine which of the following statements are true; justify each answer.
(a) $3 \mathrm{x}^{2}+11=o\left(\mathrm{x}^{5}+\mathrm{x}+99\right)$
(b) $\mathrm{x}+5 \sin \mathrm{x}=O(\mathrm{x})$
(c) $2^{\mathrm{x}}=o\left(\mathrm{x}^{100}\right)$
(d) $3^{\mathrm{x}}=O\left(\mathrm{e}^{\mathrm{x}}\right)$
(e) $\mathrm{x}=o(\ln \mathrm{x})$
(f) $\quad 3+\ln x+\ln (\ln x)+\sqrt{x}=o\left(x^{\frac{2}{3}}\right)$
(g) $\quad \ln x=o(\sqrt{x})$
(h) $\quad\left(\mathrm{x}^{2}+1\right)^{4}=O\left((2 \mathrm{x}+1)^{3} \mathrm{x}^{5}\right)$
(i) $\frac{x^{2}+13 x+2009}{5 x+1789}=O\left(\sqrt{x^{2}+9}\right)$
(j) $\ln \mathrm{x}=o(\ln (\ln \mathrm{x}))$
(k) $\ln \left(\mathrm{x}^{55}+\mathrm{x}^{33}+\mathrm{x}^{11}+1\right)=O(\ln \mathrm{x})$

Edmund Landau (1877-1938) is known for his work in analytic number theory and the distribution of primes. He first introduced the little oh notation in 1909.

