PRACTICE QUIZ II

1. Let R be the region bounded by the line $\mathrm{y}=\mathrm{x}+6$ and the parabola $\mathrm{y}=\mathrm{x}^{2}$. Assume that R is rotated about the line $\mathrm{x}=-6$. Using the method of shells, write an integral that expresses the volume of the solid of revolution generated by R. Do not evaluate the integral. Sketch!
2. Sketch the region in the first quadrant bounded by the x-axis, the y-axis, the line $x=\sqrt{3}$ and the curve $y=\sqrt{x^{2}+1}$. This region is rotated about the y-axis. Using the shell method, write a definite integral that expresses the volume of this solid of revolution. You need not evaluate this integral.
3. Let R be the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$. Find the volume obtained by rotating R about the y-axis.
4. The following integral represents the volume of a solid of revolution. Describe the solid.

$$
\int_{0}^{1} 2 \pi(3-x)\left(1-x^{2}\right) d x
$$

5. The region bounded by the curves $y=\sin ^{2} x, y=\sin ^{4} x$, for $0 \leq x \leq \pi$ is rotated about the axis $x=\pi / 2$. Find the volume of the solid using shells. Sketch!
6. Find a parameterization of the circle centered at $\mathrm{C}=(7,11)$ that has radius equal to 4 . Choose the clockwise direction.
7. How many complete cycles will Charlotte make if she lives on the following parameterized curve: $\mathrm{x}(\mathrm{t})=5 \cos 20 \pi \quad \mathrm{y}(\mathrm{t})=5 \sin 20 \pi$ where $0 \leq \mathrm{t} \leq 1$?
8. Find a parameterization of the line segment beginning at $P=(-3,4)$ and terminating at $\mathrm{Q}=(9,9)$.
9. Sketch and identify the curve defined by the parametric equations:

$$
\mathrm{x}(\mathrm{t})=1+13 \cos \mathrm{t}, \mathrm{y}=3+13 \sin \mathrm{t}, \text { where } 0 \leq \mathrm{t} \leq \pi / 2 ?
$$

10. Parameterize one cycle of the curve $\mathrm{y}=\sin 14 \mathrm{x}$.
11. Sketch (using a table) the curve defined by the parametric equations:

$$
x(t)=t \cos t, y(t)=t \sin t, t>0
$$

12. Sketch and identify the curve defined by the parametric equations:

$$
\mathrm{x}(\mathrm{t})=\mathrm{t}^{2}-\mathrm{t}, \mathrm{y}(\mathrm{t})=3 \mathrm{t}-1
$$

Lissajous figure parameterized by $x(t)=4 \sin (9 t), y(t)=7 \sin (8 t+\pi / 2)$, where $0 \leq \mathrm{t} \leq 2 \pi$

The limits of my language are the limits of my world.

- Wittgenstein, Tractatus Logico-Philosophicus

