MATH 162

PRACTICE QUIZ V

1. For each improper integral (of the second kind) below, determine convergence or divergence. For those that converge, compute its value.
(a) $\int_{0+}^{1} \frac{1}{\sqrt{x}} d x$
(b) $\int_{0}^{1-} \frac{1}{\sqrt{1-x^{2}}} d x$
(c) $\int_{0}^{\frac{\pi}{2}} \sec x d x$
(d) $\int_{0+}^{e} \ln t d t$
2. For which value(s) of the constant C will the following improper integral converge?

$$
\int_{4}^{\infty}\left(\frac{2 x}{x^{2}+1}-\frac{C}{2 x+1}\right) d x
$$

3. Find the volume of the solid of revolution obtained by rotating the curve $y=1 / x^{2}$ from $x=1$ to $x=\infty$ about the x-axis or explain why no such number exists.
4. For each of the following improper integrals, determine convergence or divergence. Use an appropriate version of the Comparison Test.
(a) $\int_{0+}^{\infty} \frac{1}{x^{\frac{2}{3}}+x^{\frac{4}{3}}} d x$
(b) $\int_{0+}^{\infty} \frac{1+x}{x^{3}+\sqrt{x}} d x$
(c) $\int_{0}^{\frac{\pi}{2}-} \tan x d x$
(d) $\int_{0+}^{1} \frac{1-\ln x}{x^{4}} d x$
(e) $\int_{0}^{\frac{\pi}{2}-} \tan x d x$
(f)

$$
\int_{0}^{2-} \frac{1}{\sqrt{4-x^{2}}} d x
$$

(g)

$$
\int_{0_{+}}^{1} \frac{1-\ln x}{x^{4}} d x
$$

5. For each of the following sequences, determine convergence or divergence. In the case of convergence, find the limit of the sequence. Briefly explain your reasoning!
(a) $c_{n}=\sqrt{1-\frac{3}{n}}$
(b) $\quad d_{n}=\frac{\cos ^{4}\left(n^{3}+n^{2}+5\right)}{n^{2}+23}$
(c) $e_{n}=1+\arctan n$
(d) $u_{n}=\frac{e^{n}}{n^{5}}$
(e) $\quad z_{n}=\frac{\left(n^{5}+1\right)^{3}(1-4 n)^{2}}{(n+9)^{17}}$
6. Consider the following recursively defined sequence:

$$
\begin{aligned}
& a_{1}=4 \\
& a_{2}=2 \\
& a_{n}=a_{n-1} a_{n-2}-a_{n-1}-a_{n-2}+1 \text { for } n \geq 3 .
\end{aligned}
$$

Find the numerical values of a_{3}, a_{4}, a_{5} and a_{6}. (Show your work.)
7. To which of the following series does the " nth term test for divergence" apply? Explain!
(a) $\sum_{n=1}^{\infty} \frac{n}{n+5}$
(b) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n}$
(d) $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
(e) $\sum_{n=1}^{\infty} \arctan (n)$
(f) $\quad \sum_{n=1}^{\infty} n^{1 / n}$
8. For $\mathrm{n} \geq 1$, let

$$
a_{n}=\int_{0}^{1}\left(x^{2}+2\right)^{n} d x
$$

Determine convergence or divergence of the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$. (Hint: Do not try to evaluate the integral! Calculator solutions are not accepted.)
Hint: Is the sequence monotone?
9. Let $\mathrm{a}_{\mathrm{n}}=1 / 1+1 / 2+1 / 3+1 / 4+\ldots+1 / \mathrm{n}$ for $\mathrm{n} \geq 1$ (integers only)

Demonstrate that the sequence $\left\{a_{n}\right\}$ diverges.
10. Assuming that the limit exists, find it.

$$
a_{1}=1+\sqrt{2}, a_{2}=1+\sqrt{1+\sqrt{2}}, a_{3}=1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{2}}}}, \ldots
$$

11. By computing the first few terms, guess what the limit of the following recursively defined sequence.

$$
a_{1}=1, a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{5}{a_{n-1}}\right) \text { for } n \geq 2
$$

There is more danger of numerical sequences continued indefinitely than of trees growing up to heaven. Each will some time reach its greatest height.

- Friedrich Ludwig Gottlob Frege, Grundgesetz der Arithmetik (1893)

