MATH 162

PRACTICE QUIZ IX

1. Integrate each of the following functions:

- (a) $\tan^5 x$
- (b) $\sec^3 x \tan^5 x$
- (c) $\tan^6 2x$
- $(d) \sec^4 x$
- (e) $(\sec x)^{-4/3} \tan x$
- $(f) \left(\sin 10x\right) \left(\sin 5x\right)$
- $(g) \sin^9 x \cos^{11} x$
- (h) $(\cos 4x)(\sin 3x)$

2. Integrate each of the following functions:

(a)
$$\frac{x^7 + 1}{x - 1}$$

(b)
$$\frac{x^2+2}{x^2-9}$$

(c)
$$\frac{x-3}{(x-1)(x-2)^2}$$

(d)
$$\frac{1}{(x^2+1)(x-2)^2}$$

(e)
$$\frac{e^x}{e^{2x} - 5e^x + 4}$$

$$(f) \frac{\cos x}{2\sin^2 x + 7\sin x + 6}$$

$$(g) \frac{\sinh x}{(\cosh x)^2 - \cosh x}$$

- 3. State *Euler's identity*. Use Euler's identity to express cos (4x) in terms of cos x and sin x.
- 4. Solve the equation $z^4 = -16$.
- 5. Express each of the following in the form a + bi
 - (a) i^{-1}
 - (b) $(-1)^{i}$
 - (c) $(1+i)^{90}$
 - (d) $3e^{\pi i/6}$
 - (e) $\left(\sqrt{3}+i\right)^{11}$
 - (f) i^i

6. Using substitution (or any other method that you prefer), evaluate each of the following integrals:

(a)
$$\int \frac{\tan(\ln x)}{x} dx$$

$$(b) \quad \int \sqrt{x} \sin(2x^{3/2}) \ dx$$

$$(c) \int e^x \sec^2(e^x - 13) dx$$

(d)
$$\int \sec x \tan x \sqrt{1 + \sec x} \ dx$$

(e)
$$\int \sqrt{a + b\sqrt{c + x}} \, dx$$

$$(f) \int \frac{\arcsin\sqrt{x}}{2\sqrt{x-x^2}} dx$$

$$(g) \int \frac{dx}{\sqrt{\arctan x} (1+x^2)}$$

7. Express each of the following in *polar form*: (a) 1 + i, (b) 3 - 3i,

(c)
$$4-4\sqrt{3} i$$
, (d) $5+12i$

- 8. Solve the equation $z^5 = 1$. (You should have five solutions.)
- 9. Solve the equation $z^4 = -1$.
- 10. Solve the equation $z^3 = i$.
- 11. Using Euler's formula, express $\sin 5x$ in terms of $\sin x$ and $\cos x$.

(*Hint*:
$$(a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$
)

- 12. Using an appropriate trig substitution, evaluate OR reduce each of the following to a simpler form:
 - (a) $\int \frac{1}{4+z^2} dz$
 - (b) $\int \frac{1}{\sqrt{9-x^2}} dx$
 - $(c) \int \frac{x^2}{\sqrt{25-x^2}} dx$
 - (d) $\int \sqrt{25t^2 36} \ dt$
 - (e) $\int \frac{\sqrt{y^2 49}}{y} dy$ for y > 7
 - (f) $\int \frac{\sqrt{w^2 9}}{w^3} dw \quad \text{for } w > 3$

(g)
$$\int \frac{1}{v^2 \sqrt{v^2 - 1}} dv$$
 for $v > 1$

13. Consider the region bounded by the graphs of $y = (x \arctan x)^{1/2}$ and y = 0, for $0 \le x \le 1$. Find the volume of the solid formed by rotating this region about the x-axis.

I'm very good at integral and differential calculus,
I know the scientific names of beings animalculous;
In short, in matters vegetable, animal, and mineral,
I am the very model of a modern Major-General.
About binomial theorems I'm teeming with a lot of news,
With many cheerful facts about the square on the hypotenuse.

- W. S. Gilbert, **The Pirates of Penzance**(1879)