MATH 162

1. For each series below, determine absolute convergence, conditional convergence or divergence. Justify each answer.
(a) $\sum_{n=3}^{\infty}(-1)^{n} \frac{13}{(\ln n)^{13}}$
(b) $\sum_{k=1}^{\infty}(-1)^{k} \frac{(k+3)\left(k^{2}+5\right)}{(k+13 \ln k)^{4}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{\left(1+\frac{1}{n}\right)^{n^{2}}}$
(d) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\ln \left(e^{n}+e^{-n}\right)}$
(e) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{13}}{(n+13)!}$
2. For each power series below, determine the radius of convergence and the interval of convergence. Study the behavior of each power series at the endpoints.
(a) $\sum_{n=1}^{\infty} \frac{13^{n}}{n(n+13)} x^{n}$
(b) $\quad \sum_{n=1}^{\infty} \frac{1}{n(n+3)(n+11)}(x-4)^{n}$
(c) $\quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n+7}}(x+13)^{n}$
3. (a) Find the $3^{\text {rd }}$ order Maclaurin polynomial of $\cosh x$.
(b) Find the $5^{\text {th }}$ order Taylor polynomial of $\cos x$ centered at $x=\pi / 2$.
4. Find the $4^{\text {th }}$ order Taylor polynomial of e^{x} centered at $\mathrm{x}=2$.
5. Find the $3^{\text {rd }}$ order Maclaurin polynomial of

$$
f(x)=4+(x+13)^{2}+(x+13)^{3}
$$

6. By differentiating the power series expansion of $y=1 /(1-x)$, find the value of

$$
\sum_{k=0}^{\infty} \frac{k}{13^{k}}
$$

7. Find the first five non-zero terms of the Maclaurin series expansion of

$$
h(x)=\left(1+2 x^{2}\right) \mathrm{e}^{3 \mathrm{x}} .
$$

8. Let $f(x)=x^{8} e^{5 x}$. Compute $f^{(100)}(0)$. Do not simplify your answer.
9. Find the radius of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{n!}{(1)(3)(5)(7) \ldots(2 n-1)} x^{n}
$$

10. Find the radius of convergence of the power series:

$$
\sum_{n=0}^{\infty} n!x^{2^{n}}
$$

11. Find the radius of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{n}} x^{n}
$$

12. Without using l'Hôpital's rule, calculate the following limit. Show your work!

13. Let $\mathrm{G}(\mathrm{x})=\mathrm{x}^{3} \cosh (3 \mathrm{x})$. Using an appropriate Maclaurin series, compute $\mathrm{G}^{(2015)}(0)$. (Do not try to simplify your answer.)
14. Find the first four non-zero terms of the Maclaurin series for each of the following:
(a) $\frac{e^{2 x}}{\cosh x}$
(b) $\frac{\ln (1+x)}{1+x^{2}}$
(c) $e^{x^{2}} \sin 2 x$
15. (a) Express $\left(\frac{13+i}{1+i}\right)(1-2 i)+4+5 i$ as a complex number of the form $a+b i$.
(b) By expressing -1 as an appropriate complex power of e, calculate the five fifth roots of $-i$.
Express your answers in the form a + bi.
(c) Using Euler's formula, express $\cos (4 \mathrm{x})$ in terms of $\cos \mathrm{x}$ and $\sin \mathrm{x}$.
16. Using division of power series, find the first three non-zero terms of the Maclaurin series expansion of

$$
f(x)=\frac{e^{2 x}+1}{\cos x}
$$

17. Using multiplication of power series, find the first four non-zero terms of the Maclaurin series expansion of

$$
g(x)=e^{x^{2}}\left(1+x^{2}+x^{3}\right)
$$

18. Determine the interval of convergence of the following power series. (You need not study end-point behavior.)

$$
\sum_{n=1}^{\infty} \frac{n^{13} 13^{n}}{\sqrt{n+2015}}(x-13)^{n}
$$

19. Analyze the behavior of the series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+4}}{\left(n^{1 / 3}+1789\right)^{5}}
$$

20. Prove Euler's formula.
21. What is the relationship between $\cosh \mathrm{x}$ and $\cos \mathrm{x}$? between $\sinh \mathrm{x}$ and $\sin \mathrm{x}$?

As far as the laws of mathematics refer to reality, they are not certain; as far as they are certain, they do not refer to reality.

- Albert Einstein

