1. The base of a certain solid is an elliptical region given by the inequality $9 x^{2}+4 y^{2} \leq 36$. Cross-sections perpendicular to the y-axis are semicircles. Express the volume of the solid as a definite integral. Sketch. Do not evaluate.

Solution:

Consider a thin horizontal rectangle between $y=-3$ and $y=3$. The thickness of the rectangle is Δy. The area of the semicircle associated with this rectangle is $(\pi / 2) x^{2}$, where $x=\operatorname{sqrt}\left(\left(36-4 y^{2}\right) / 9\right)$. Thus the total volume of the solid is:

$$
V=\int_{-3}^{3} A(y) d y=\int_{-3}^{3} \frac{1}{2} \pi\left(\sqrt{\frac{36-4 y^{2}}{9}}\right)^{2} d y=\frac{\pi}{18} \int_{-3}^{3}\left(36-4 y^{2}\right) d y
$$

2. Let T be the triangular region with vertices $(0,0),(4,4)$ and $(0,5)$. Suppose that T is rotated about the axis $y=-8$. Sketch. Using the washer method, write a definite integral that expresses the volume of this solid of revolution. Do not evaluate.

Solution:

The equation of the line joining $(0,5)$ and $(4,4)$ is $y=5-x / 4$ and the equation of the line joining $(0,0)$ and $(4,4)$ is $y=x$.

To use washers, we fix the value of x (between 0 and 4). Consider a corresponding vertical rectangle with width Δx. The outer radius of the washer is $5-x / 4-(-8)=$ $13-(x / 4)$ and the inner radius of the washer is $x+8$. Hence the volume of the solid is:

$$
V=\int_{0}^{4} A(x) d x=\int_{0}^{4} \pi\left(\left(13-\frac{x}{4}\right)^{2}-(x+8)^{2}\right) d x
$$

The quarrel [between Newton and Leibniz] is simply the expression of evil weaknesses and fostered by vile people. Just what would Newton have lost if he had acknowledged Leibniz's originality? Absolutely nothing! He would have gained a lot. And yet how hard it is to acknowledge something of this sort: someone who tries it feels as though he were confessing his own incapacity. ... It's a question of envy of course. And anyone who experiences it ought to keep on telling himself: "It's a mistake! It's a mistake! -- "

