MATH 162 SOLUTIONS: QUIZ II

1. [20 pts] Consider the region R in the first quadrant that is bounded by the curves $\mathrm{y}=(\mathrm{x}-1)^{2}$ and $\mathrm{y}=\sqrt{x-1}$. Sketch! This region is rotated about the axis $\mathrm{x}=3$. Using the shell method write the volume of this solid of rotation as a Riemann integral.

The thickness of the shell is $\Delta \mathrm{x}$, so the integrand must be a function of x. The distance of the shell from the axis of rotation is $3-x$. Furthermore, the height of the shell is the difference between the two y-values (corresponding to x) which is determined by the two curves.
That is, the height of the shell is
$\sqrt{x-1}-(x-1)^{2}$
Hence the volume of the solid of revolution can be expressed by the integral:

$$
2 \pi \int_{1}^{2}\left(\sqrt{x-1)}-(x-1)^{2}\right)(3-x) d x
$$

2. [10 pts] Consider the parameterized curve: $\mathrm{x}=\mathrm{e}^{\mathrm{t}}-1, \mathrm{y}=\mathrm{e}^{2 \mathrm{t}}$, where $\mathrm{t} \geq 0$, describing the position in the xy-plane of Mehitabel, the cat, at time t.
(a) By eliminating the parameter, t, express y as a function of x.

Solution: Since $x=e^{t}-1, e^{t}=x+1$. Hence $y=e^{2 t}=(x+1)^{2}$. Now, the domain of this function is $[0, \infty)$.
(b) Sketch the parameterized curve, using an arrow to indicate the direction of Mehitabel's journey. Also, indicate the birthplace of Mehitabel.

Solution: When $t=0, x=0$ and $y=1$. Thus Mehitabel is born at the point $(0,1)$ in the xy-plane.

As $t>0$ increases, both x and y increase. Thus Mehitabel's direction of motion is northeast.

3. [5 pts] Charlotte travels along a straight line from $\mathrm{P}=(1,-3)$ to $\mathrm{Q}=(5,7)$. Find a parameterization for this trip. Let us assume that, when $\mathrm{t}=0$, Charlotte is at P and, when $\mathrm{t}=1$, Charlotte has reached Q.

Solution: Let $(x(t), y(t))=(1-t)(1,-3)+t(5,7)$
Thus $x(t)=(1-t) 1+5 t=4 t+1$. and $y(t)=(1-t)(-3)+7 t=10 t-3$

