Instructions: For each of the following infinite series, determine convergence or divergence.
You need not find the sum of those series that converge. You must justify your answers! Answer any 6 of the following 7 questions. You may answer all 7 to obtain extra credit. [10 pts per problem]

1. $\sum_{n=1}^{\infty}\left(\frac{1}{n+1788}-\frac{1}{n+1789}\right)$

Solution: This series is telescoping. Consider the sequence of partial sums:

$$
\begin{aligned}
& s_{1}=\frac{1}{1789}-\frac{1}{1790} \\
& s_{2}=\left(\frac{1}{1789}-\frac{1}{1790}\right)+\left(\frac{1}{1790}-\frac{1}{1791}\right)=\frac{1}{1789}-\frac{1}{1791} \\
& s_{3}=\left(\frac{1}{1789}-\frac{1}{1790}\right)+\left(\frac{1}{1790}-\frac{1}{1791}\right)+\left(\frac{1}{1791}-\frac{1}{1792}\right)=\frac{1}{1789}-\frac{1}{1792}
\end{aligned}
$$

from which we infer that $s_{n}=1 / 1789-1 /(1789+n) \rightarrow 1 / 1789$ as $n \rightarrow \infty$. Thus our series converges and its sum is 1/1789.
2. $\sum_{n=1}^{\infty} \frac{17^{n} n^{2}}{4^{2 n}}$

Solution:

$$
\frac{17^{n} n^{2}}{4^{2 n}}=\frac{17^{n} n^{2}}{16^{n}}=\left(\frac{17}{16}\right)^{n} n^{2} \rightarrow \infty
$$

Applying the $n^{\text {th }}$ term test for divergence, we see that our series diverges.
Alternatively: Applying the ratio test

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{\frac{17^{n+1}(n+1)^{2}}{4^{2(n+1)}}}{\frac{17^{n} n^{2}}{4^{2 n}}}=\frac{4^{2 n}}{4^{2 n+2}} \frac{17^{n+1}}{17^{n}} \frac{(n+1)^{2}}{n^{2}}= \\
& \frac{17}{16}\left(\frac{n+1}{n}\right)^{2} \rightarrow \frac{17}{16}>1
\end{aligned}
$$

we find that the series diverges (since $r>1$).
3. $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{n}$

Solution: Since $0<\left(\frac{1}{n}\right)^{n}=\frac{1}{n^{n}} \leq \frac{1}{n^{2}}$ for all $n \geq 1$
We already know (from an application of the Comparison Test discussed in class) that
$\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{2}$ converges.
Finally, we can apply the Comparison Test to conclude that $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{n}$ converges.
4. $19.113113113113 \ldots$

Solution: All repeating decimals converge to a rational number.
Or we can just note that separating 19.1 from the decimal expansion yields a geometric series, viz.
$19.113113113113 \ldots=19+\{0.113+0.000113+0.000000113+\ldots\}$

Now $0.113+0.000113+0.000000113+\ldots$ is geometric with ratio
$10^{-3}<1$. Hence we conclude that the repeating decimal converges. If we wish to compute the sum of the series (which is not required in this problem) we have:

$$
19.113113113 \ldots=19+\frac{113\left(10^{-3}\right)}{1-10^{-3}}=19+\frac{113}{999}
$$

5. $\sum_{n=1}^{\infty} \frac{n^{3}}{\sqrt{1+n+n^{9}}}$

Solution: $\frac{n^{3}}{\sqrt{1+n+n^{9}}}<\frac{n^{3}}{\sqrt{n^{9}}}=\frac{1}{n^{1.5}}$

Now the series $\sum_{n=1}^{\infty} \frac{1}{n^{1.5}}$ converges by the p-test. (Since we have not yet learned the p-test for $1<p<2$, everyone receives full credit for this problem.)
6. $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$

Solution: Consider the partial sums:

$$
\begin{aligned}
& s_{1}=\ln 1-\ln 2=-\ln 2 \\
& s_{2}=-\ln 2+(\ln 2-\ln 3)=-\ln 3 \\
& s_{3}=-\ln 2+(\ln 2-\ln 3)+(\ln 3-\ln 4)=-\ln 4 \\
& s_{4}=-\ln 2+(\ln 2-\ln 3)+(\ln 3-\ln 4)+(\ln 4-\ln 5)=-\ln 5
\end{aligned}
$$

From this we infer that $s_{n}=-\ln (n+1)$. Since the sequence $\left\{s_{n}\right\}$ clearly diverges, we conclude that our original series diverges.
7. $\sum_{n=1}^{\infty} \sqrt{\frac{n\left(n^{2}+1\right)^{3}}{(2 n+2015)^{7}+\ln x+(\ln \ln x)^{1789}}}$

Solution:

$$
\begin{aligned}
& \sqrt{\frac{n\left(n^{2}+1\right)^{3}}{(2 n+2015)^{7}+\ln n+(\ln \ln n)^{1789}}}>\sqrt{\frac{n\left(n^{2}\right)^{3}}{(2 n+n)^{7}+n+n}}= \\
& \sqrt{\frac{n^{7}}{(3)^{7} n^{7}+n+n}}>\sqrt{\frac{n^{7}}{(3)^{7} n^{7}+n^{7}+n^{7}}}>\sqrt{\frac{n^{7}}{(3)^{8} n^{7}}}=\frac{1}{3^{4}} \neq 0
\end{aligned}
$$

Applying the $n^{\text {th }}$ term test for divergence, we see that our series diverges.

EXTRA EXTRA CREDIT (University of Michigan, Calculus 2 final exam question)

Suppose that $f(x), g(x), h(x)$ and $k(x)$ are all positive, differentiable functions.
Suppose that

$$
0<f(x)<\frac{1}{x}<g(x)<\frac{1}{x^{2}}
$$

for all $0<x<1$, and that

$$
0<h(x)<\frac{1}{x^{2}}<k(x)<\frac{1}{x}
$$

for $x>1$. Determine whether the following statements are always, sometimes or never true by circling the appropriate answer. No justification is necessary.
a. [2 points] $\int_{0}^{1} g(x) d x$ converges.

Always

Sometimes
Never
b. [2 points] $\int_{0}^{1} f(x) d x$ diverges.

Always \quad Sometimes \quad Never
c. [2 points] $\sum_{n=1}^{\infty} h(n)$ diverges.

Always
Sometimes
Never
d. [2 points] $\sum_{n=1}^{\infty} k(n)$ converges.
Always \quad Sometimes \quad Never

A mathematician is a blind man in a dark room looking for a black cat which isn't there.

- Charles R. Darwin

