MATH 162 SOLUTIONS: QUIZ VI

Instructions: For each of the following infinite series, determine convergence or divergence.
You need not find the sum of those series that converge. You must justify your answers!
Answer any 6 of the following 7 questions. You may answer all 7 to obtain extra credit.

[10 pts per problem]
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Solution: This series is telescoping. Consider the sequence of partial sums:
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from which we infer that s, = 1/1789 — 1/(1789+n) — 1/1789 asn — co. Thus our series

converges and its sum is 1/1789.
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Applying the n' term test for divergence, we see that our series diverges.

Alternatively: Applying the ratio test
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we find that the series diverges (since r > 1).
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We already know (from an application of the Comparison Test discussed in class) that

Z (Hj converges.
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Finally, we can apply the Comparison Test to conclude that Z(Hj converges.
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Solution: All repeating decimals converge to a rational number.

Or we can just note that separating 19.1 from the decimal expansion yields a geometric
series, viz.

19.113113113113... =19 +{0.113 + 0.000113 + 0.000000113 + ...}



Now 0.113 + 0.000113 + 0.000000113 + ... is geometric with ratio
10 ® < 1. Hence we conclude that the repeating decimal converges. If we wish to compute

the sum of the series (which is not required in this problem) we have:
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Now the series Z s converges by the p-test. (Since we have not yet learned the p-test
=1

for 1 <p < 2, everyone receives full credit for this problem.)
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Solution: Consider the partial sums:

s =IN1-In2=-1In2

s,=—IN2+(IN2-In3)=-In3
s;,=—In2+(IN2-In3)+(IN3-In4)=-In4
s,=—IN2+(IN2-In3)+(In3-In4)+(IN4-In5)=-In5

From this we infer that s, = —In(n + 1). Since the sequence { s, } clearly diverges, we

conclude that our original series diverges.
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Applying the n' term test for divergence, we see that our series diverges.



EXTRA EXTRA CREDIT (university of Michigan, Calculus 2 final exam question)

Suppose that f(x), g(z), h(x) and k(z) are all positive, differentiable funetions.

E-luppme that . .
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for all 0 < & < 1, and that
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for # = 1. Determine whether the following statements are always, sometimes or never true
by circling the appropriate answer. No justification is necessary.

1
a. [2 points] / glz)dr converges.
Jo
Always Sometimes
1
b. [2 points]| [ flx)de diverges.
Jo

Always Never

oo
c. [2 points]| Zh(n} diverges.

n=1

Always Sometimes

s
d. [2 points] z k(n) converges.

n=I1

Always Never

A mathematician is a blind man in a dark room looking for a black cat which
isn't there.
- Charles R. Darwin



