
MATH 162         Solutions:  QUIZ VI   
  

 

Instructions:   For each of the following infinite series, determine convergence or divergence.  

You need not find the sum of those series that converge.  You must justify your answers! 

Answer any 6 of the following 7 questions.  You may answer all 7 to obtain extra credit. 

[10 pts per problem] 

 

1.     















 1789

1

1788

1

1 nnn

 

Solution:  This series is telescoping.  Consider the sequence of partial sums: 
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from which we infer that sn = 1/1789 – 1/(1789+n)  1/1789  as n  .  Thus our series 

converges and its sum is 1/1789. 
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Solution:    
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Applying the nth term test for divergence, we see that our series diverges.  

Alternatively:  Applying the ratio test 
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we find that the series diverges (since r > 1). 

 

3.         

n

n n














1

1
 

Solution:  Since 1
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We already know (from an application of the Comparison Test discussed in class) that 
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Finally, we can apply the Comparison Test to conclude that 
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4.     19.113113113113… 

Solution:  All repeating decimals converge to a rational number.   

Or we can just note that separating 19.1 from the decimal expansion yields a geometric 

series, viz.     

19.113113113113…  = 19 + {0.113 + 0.000113 + 0.000000113 + …} 
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Now 0.113 + 0.000113 + 0.000000113 + …  is geometric with ratio  

10 -3 < 1. Hence we conclude that the repeating decimal converges.  If we wish to compute 

the sum of the series (which is not required in this problem) we have: 
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Solution:  5.19
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Now the series 5.1
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 converges by the p-test. (Since we have not yet learned the p-test 

for 1 < p < 2, everyone receives full credit for this problem.) 
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Solution: Consider the partial sums: 
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From this we infer that sn = –ln(n + 1). Since the sequence { sn } clearly diverges, we 

conclude that our original series diverges.   
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Solution:   
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Applying the nth term test for divergence, we see that our series diverges.  
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Extra Extra Credit   (University of Michigan, Calculus 2 final exam question) 

 

 

 

 

 

 

 

A mathematician is a blind man in a dark room looking for a black cat which 

isn't there. 

-  Charles R. Darwin 


