MATH 162

(PARTLAL) SOLUTIONS: TEST I

Instructions: Answer any 8 of the following 10 questions. You may answer more than 8 to obtain extra credit. You must show your reasoning; calculator answers are not acceptable.

1. Consider the region bounded by the curves $y=8-x^{2}$ and $y=x^{2}$. Sketch! Find the volume of the solid generated by revolving this region about the line $\mathrm{x}=5$. Express your answer as a Riemann integral. (Do not evaluate.)

2. Evaluate $\int x \cosh (3 x) d x$
(Hint: recall that $\mathrm{d} / \mathrm{dx} \sinh \mathrm{x}=\cosh \mathrm{x}$ and $\mathrm{d} / \mathrm{dx} \cosh \mathrm{x}=\sinh \mathrm{x}$)

Solution: Using integration by parts, we let $f(x)=x$ and $g^{\prime}(x)=\cosh 3 x$. Then $f^{\prime}(x)=1$ and $g(x)=(\sinh 3 x) / 3$. Thus

$$
\int x \cosh (3 x) d x=\frac{x \sinh (3 x)}{3}-\int \frac{\sinh (3 x)}{3} d x=\frac{x \sinh (3 x)}{3}-\frac{\cosh (3 x)}{9}+C
$$

3. For each of the following statements answer True or False. Briefly justify each answer!
(a) $\mathrm{x}^{3} \ln \mathrm{x}+\mathrm{x}+1=o\left(\mathrm{x}^{4}\right)$

True since $\left(x^{3} \ln x+x+1\right) / x^{4} \rightarrow 0$ as $x \rightarrow \infty$.
(b) $\quad \sinh x=O(\cosh x)$

True since $\sinh x / \cosh x=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right) \rightarrow 1$ as $x \rightarrow \infty$.
(c) $\frac{3 x^{3}\left(x^{2}+1\right)^{5}+5 x \ln x+99}{x^{5}+5 x^{3}+x+2015}=O\left(x^{8}\right)$

True since:
$\frac{\frac{3 x^{3}\left(x^{2}+1\right)^{5}+5 x \ln x+99}{x^{5}+5 x^{3}+x+2015}}{x^{8}}=\frac{3 x^{3}\left(x^{2}+1\right)^{5}+5 x \ln x+99}{x^{13}+5 x^{11}+x^{9}+2015 x^{8}} \rightarrow 3$ as $x \rightarrow \infty$
(d) $\mathrm{x}=o\left((\ln \mathrm{x})^{2015}\right)$

False since:

$$
\frac{x}{(\ln x)^{2015}} \rightarrow 0 \text { as } x \rightarrow \infty
$$

University of Michigan test problem:
4. [12 points] Consider the region in the $x y$-plane bounded by the curves $y=9-x^{2}, x=1$, and $y=5$. This region is pictured below.

Give a definite integral that computes the quantities below. You do not need to evaluate these integrals.
a. [3 points] The area of the region shown.
b. [3 points] The volume of the solid obtained by rotating the region about the y-axis.
c. [3 points] The volume of the solid obtained by rotating the region about the x-axis.
d. [3 points] The volume of the solid obtained by rotating the region about the line $y=5$.

5. Evaluate $\int \arcsin x d x$

Solution:

Integration by parts: Let $f(x)=\operatorname{arc} \sin x$ and $g^{\prime}(x)=1$. Then $f^{\prime}(x)=1 /\left(1-x^{2}\right)^{1 / 2}$ and $g(x)$ $=x$. So

$$
\int \arcsin x d x=x \arcsin x-\int \frac{x}{\sqrt{1-x^{2}}} d x=x \arcsin x+\sqrt{1-x^{2}}+C
$$

6. The base of a solid is a disk of radius 5. Each cross section cut by a plane perpendicular to a diameter is an isosceles right triangle with hypotenuse on the base.

Express the volume of the solid as a Riemann integral. (Do not evaluate.)

Solution:

The equation of this circle is $x^{2}+y^{2}=25$. Let us assume that the diameter referred to in the question lies on the x-axis. Then, taking a typical slice at x (in the interval [-5, 5], with thickness Δx, the volume of the corresponding slice (an isosceles right triangle with hypotenuse $2 y=2 \operatorname{Sqrt}\left(25-x^{2}\right)$ is given by
$\Delta V=1 / 2$ y (2y) $\Delta x=\left(25-x^{2}\right) \Delta x$. Thus:

$$
V=\int_{-5}^{5}\left(25-x^{2}\right) d x
$$

7. University of Michigan test problem:

The RideJoyfully company wants to design a bicycle ramp using the shape of the function $f(x)=\frac{4}{3} x^{\frac{3}{2}}$ where L is the length in meters of the base of the ramp.
Find the length of the ramp.

Solution:

$$
\begin{aligned}
& d s=\sqrt{1+(d y / d x)^{2}} d x=\sqrt{1+(2 \sqrt{x})^{2}} d x=\sqrt{1+4 x} d x \\
& s=\int_{0}^{L} \sqrt{1+4 x} d x
\end{aligned}
$$

8. Consider the triangle with vertices $(0,2),(6,2),(3,4)$. This triangle is rotated about the axis $y=-3$. Express the volume of this solid of revolution as a Riemann integral. (Do not evaluate.)

Solution:

The equations of the two non-horizontal sides are: $y=(2 / 3) x+2$ and $y=(-2 / 3) x+6$.
Solving for x, we obtain: $x=(3 / 2)(y-2)$ and $x=-(3 / 2)(y-6)$, respectively.
Using shells, the radius of the shell at y is $y-(-3)=y+3$ and the length of the shell is $(3 / 2)(y-6)-((3 / 2)(y-2))=12-3 y$. Hence:

$$
V=\int_{2}^{6} 2 \pi(y-(-3))(12-3 y) d y=6 \pi \int_{2}^{6}(y+3)(4-y) d y
$$

9. Assume that m and n are positive integers. Using integration by parts, derive the following reduction formula:

$$
\int x^{m}(\ln x)^{n} d x=\frac{x^{m+1}(\ln x)^{n}}{m+1}-\frac{n}{m+1} \int x^{m}(\ln x)^{n-1} d x
$$

Solution:

Let $f(x)=(\ln x)^{n}$ and $g^{\prime}(x)=x^{m}$.Thus $f^{\prime}(x)=n(\ln x)^{n-1}(1 / x)$ and $g(x)=x^{m+1} /(m+1)$. Thus:

$$
\begin{aligned}
& \int x^{m}(\ln x)^{n} d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x=(\ln x)^{n} \frac{x^{m+1}}{m+1}-\int \frac{n(\ln x)^{n-1}}{x} \frac{x^{m+1}}{m+1} d x= \\
& \frac{x^{m+1}(\ln x)^{n}}{m+1}-\frac{n}{m+1} \int x^{m}(\ln x)^{n-1} d x
\end{aligned}
$$

10. University of Michigan test problem:
[12 points] Country music legend Willie Nelson is concerned about our dependence of fossi fuels. In 2005 , he started a company which sells a bio-diesel fuel called BioWillie. He recently added a new cylindrical underground storage tank at his factory, and he needs to know how much work is required to pump all the fuel in a full tank to the surface. The tank is picturec below. It is 5 meters long and has a radius of 2 meters. Its center line is 17 meters underground BioWillie fuel has a density of 900 kg per cubic meter. Make sure to include appropriate units and justification to support your answers.

a. [7 points] Write an expression that approximates the work done in lifting a horizonta slice of fuel that is h_{i} meters below the ground's surface, given that the thickness of the slice is Δh meters.

Solution: Using the ground's surface as our horizontal axis and h be the variable on the vertical axis, then the cross section of the tank can be descirebed by
$x^{2}+(h+17)^{2}=4$.

$$
\text { So } \Delta V=2 \sqrt{4-(h+17)^{2}} \text { (5) } \Delta h
$$

Distance $=-h$
b. [5 pts] Help Willie Nelson by computing the work required to pump all the fuel in a full tank to the ground's surface. Express your answer as a Riemann integral. (Do not evaluate.)

Solution:

So Work $=-\int_{-19}^{-15}(9000) \sqrt{4-(h+17)^{2}} h d h$

If a lion could talk, we could not understand him.

- Ludwig Wittgenstein

