
MATH 162                Solutions:  TEST II         
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 PART I   (Answer all four problems.) 

 

1.   Compute the value of the following improper integral: 
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2.     Albertine ponders the following recursively defined sequence: 

c1 =  1, 
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(a)   Find the values of  c2 , c3  and c4. 
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Setting n = 1: 
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(b)    Assuming that the limit of cn as n   exists, help Albertine to find its 

exact value. 

Solution: 

 

Assume that L = lim cn exists.  Then: 









 3

1
limlim 1

n

n
c

c  

and so: 

3
1


L
L

 



 3 

Multiplying both sides by L yields:  L2 = 1 + 3L.  So:   L2 – 3L – 1 = 0.  Using 

the quadratic formula: 

3027.0,3027.3
2

133



L  

 

We reject the negative root, since c1 > 0 and all subsequent terms of the 

sequence are also positive (reasoning inductively). 

Thus, if lim cn exists, this limit must be  

2

133
 

 

3.   Determine convergence or divergence of the following improper integral.   

Justify your answer:     
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4.    The life-span (in years) of a vampire bat can be modeled by a random 

variable X with probability density function 
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(a)   Find the constant c.  (Hint:  Every bat must die.) 

 

Solution: 
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Hence c = 1/10 

 

 

 

(b)   Find the probability that a randomly chosen vampire bat will live longer 

than 11 years.  (Express your answer to the nearest hundredth.) 
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PART II     Select any 4 of the following 5 sequences.  For each selected 

sequence, determine convergence or divergence.  Briefly justify each answer.  In 

the case of convergence, find the limit.   Calculator results will not earn full 

credit.  (You may answer all 6 to earn extra credit.)   
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Solution:   Let h = 1/(13n).  Then n = 1/(13h) and as n  , h  0.  Hence: 
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Hence the sequence an converges to 1/13. 
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Solution:   Note that: 
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Hence the sequence bn converges to e2. 
 

 

 

3.         13719 2424  nnnnncn  

 

 

Solution:   Rationalizing the “numerator” yields: 
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Hence the sequence cn converges to 13. 
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nnndn arctan)5ln()2015ln(.4    

 

 

Solution:  The sequence converges: 
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Solution:  The sequence converges: 
 

ln n/ n → 0 

cos (/n) → cos(0) = 1 
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PART III     Select any 4 of the following 5 series.  For each selected series, 

determine convergence or divergence.   Justify each answer.  (You may answer 

all 5 to earn extra credit.) 
 

1.      )arctan()1arctan(
1
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Solution:  Since this series is telescoping, we will consider the sequence of partial 

sums: 

s1 = arctan(0) – arctan(1) 

s2 = (arctan(0) – arctan(1)) + (arctan(1) – arctan(2)  =  – arctan(2)   

s3 = (arctan(0) – arctan(1)) + (arctan(1) – arctan(2)) + (arctan(2) – arctan(3))    

=  – arctan(3)   

We infer that, in general, sn = -arctan(n). 

Now sn = -arctan n → -/2 as n → ∞.  So the series is convergent. 
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Solution:   Applying the ratio test 
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we find that the series converges since r < 1. 
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3.         
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Solution: 

Since  ln x < x , we have: 
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Thus, invoking both the p-test and the Comparison Test, our original 

integral converges.   

 

4.     314.314314314… 

Solution:   This is the geometric series:    314 + (314)10 -3 + (314)10 -6 + … 

Since r = 10 -3 < 1, our series converges. 

Its sum is  
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Solution:   Consider the following inequality: 
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Using the p-test, we see that the smaller series diverges and hence our series 

diverges as well. 
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PART IV.    Select any three of the following four problems.  You may answer all 

four for extra credit.   For each improper integral below, determine convergence 

or divergence.  Justify each answer! 
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Solution:     Since ln x  < x   for x > 1 
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Now using the Comparison Test, and the p-test for p = 3, we see that our 

improper integral converges. 
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Solution:   Observe that 
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Thus, invoking the Comparison Test, our original integral converges.   
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Solution:   Observe that 

28

666

8

6 1
)22(

139

45

139
0

xx

xxx

xx

xx

















 

Thus, invoking the Comparison Test, our original integral converges.   
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Observe that 
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Thus, invoking the Comparison Test, our original integral diverges.   

 

 

 

PART V.    Select any 3 of the following 4 problems.  You may answer all four 

for extra credit.   For each numerical series below, determine convergence or 

divergence.   Justify each answer.   
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(A)       
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Solution:  Applying the ratio test to this positive series: 
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Since r < 1, we conclude that our positive series converges.   
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Solution:  Applying the nth root test to this positive series: 
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Since  < 1, we conclude that our positive series converges.   
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(C)     2
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Solution:   
Applying the ratio test to this positive series: 
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We may invoke the n th Term Test for Divergence to conclude that our 

original series diverges.  
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 we apply the  nth Term Test for Divergence to 

conclude that our series diverges. 
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EXTRA CREDIT  (University of Michigan midterm problem)
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I tell them that if they will occupy themselves with the study of 

mathematics they will find in it the best remedy against the lusts of the 

flesh. 

 

   Thomas Mann, THE MAGIC MOUNTAIN 

 


