MATH 162 SOLUTIONS: TEST III

"Then you should say what you mean," the March Hare went on. "I do, " Alice hastily replied; "at least I mean what I say, that's the same thing, you know."

"Not the same thing a bit!" said the Hatter. "Why, you might just as well say that "I see what I eat" is the same thing as "I eat what I see!"

Lewis Carroll, Alice in Wonderland

Instructions: Answer any 7 of the following 8 problems. You may answer all 8 to obtain extra credit.

1. Without using l'Hôpital's rule, find:

$$
\lim _{x \rightarrow 0} \frac{e^{3 x^{2}}-1-3 x^{2}-\frac{9}{2} x^{4}-\frac{9}{2} x^{6}}{\cos \left(x^{4}\right)-1}
$$

Solution:

Since

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+O\left(x^{5}\right)
$$

it follows that:

$$
\begin{aligned}
& e^{3 x^{2}}=1+\frac{3 x^{2}}{1!}+\frac{\left(3 x^{2}\right)^{2}}{2!}+\frac{\left(3 x^{2}\right)^{3}}{3!}+\frac{\left(3 x^{2}\right)^{4}}{4!}+O\left(x^{10}\right)= \\
& 1+3 x^{2}+\frac{9 x^{4}}{2}+\frac{27 x^{6}}{6}+\frac{81 x^{8}}{24}+O\left(x^{10}\right)= \\
& 1+3 x^{2}+\frac{9 x^{4}}{2}+\frac{9 x^{6}}{2}+\frac{27 x^{8}}{8}+O\left(x^{10}\right)
\end{aligned}
$$

Since

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+O\left(x^{6}\right)
$$

it follows that:

$$
\cos \left(x^{4}\right)=1-\frac{x^{8}}{2!}+O\left(x^{16}\right)
$$

Hence:

$$
\frac{e^{3 x^{2}}-1-3 x^{2}-\frac{9}{2} x^{4}-\frac{9}{2} x^{6}}{\cos \left(x^{4}\right)-1}=
$$

$$
\frac{1+3 x^{2}+\frac{9 x^{4}}{2}+\frac{9 x^{6}}{2}+\frac{27 x^{8}}{8}+O\left(x^{10}\right)-1-3 x^{2}-\frac{9}{2} x^{4}-\frac{9}{2} x^{6}}{1-\frac{x^{8}}{2!}+O\left(x^{16}\right)-1}=
$$

$$
\frac{\frac{27 x^{8}}{8}+O\left(x^{10}\right)}{-\frac{x^{8}}{2!}+O\left(x^{16}\right)} \rightarrow \frac{\frac{27}{8}}{-\frac{1}{2!}}=-\frac{27}{4}
$$

2. Given $\mathrm{y}=\mathrm{G}(\mathrm{x})$ below, calculate the value of $\mathrm{G}^{(1313)}(0)$. (Express your answer in factorial form.)

$$
G(x)=x^{3} \sinh \left(x^{2}\right)
$$

Solution:
Beginning with the Maclaurin series for sinh t and then replacing t by x^{2} :

$$
\begin{aligned}
& \sinh t=\frac{t}{1!}+\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\ldots+\frac{t^{2 n+1}}{(2 n+1)!}+\ldots \\
& \sinh \left(x^{2}\right)=\frac{x^{2}}{1!}+\frac{x^{6}}{3!}+\frac{x^{10}}{5!}+\ldots+\frac{x^{4 n+2}}{(2 n+1)!}+\ldots
\end{aligned}
$$

Now, multiplying by x^{3} yields:

$$
G(x)=x^{3} \sinh \left(x^{2}\right)=\frac{x^{5}}{1!}+\frac{x^{9}}{3!}+\frac{x^{13}}{5!}+\ldots+\frac{x^{4 n+5}}{(2 n+1)!}+\ldots
$$

Now, the general Maclaurin series of $G(x)$ is:

$$
G(x)=G(0)+\frac{G^{\prime}(0)}{1!} x+\ldots+\frac{G^{(k)}(0)}{k!} x^{k}+\ldots
$$

Thus the coefficient of x^{1313} is $\left.G^{(1313}\right)(0) / 1313$!

Now the series for $x^{3} \sinh \left(x^{2}\right)$ has coefficient of x^{1313} occur when $4 n+$ $5=1313$, that is, when $n=327$ (and so $2 n+1=655$). Thus this coefficient is: $1 / 655$!

Equating $G^{(1313)}(0) / 1313$! with $1 / 655$!, we find that:
$G^{(1313)}(0)=1313!/ 655!$
3. By dividing power series, find the first three non-zero terms of the Maclaurin series of
$\frac{e^{x^{2}}}{1+\sin x}$

Solution:

$$
\begin{aligned}
& \frac{e^{x^{2}}}{1+\sin x}=\frac{1+x^{2}+\frac{1}{2!} x^{4}+\frac{1}{3!} x^{6}+\ldots}{1+\left(x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\ldots\right)}= \\
& \frac{1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}+\ldots}{1+x-\frac{1}{6} x^{3}+\ldots}=1+x+x^{2}+\frac{5}{6} x^{3}+\ldots
\end{aligned}
$$

4. For each series below, determine absolute convergence, conditional convergence or divergence. Justify each answer.
(a) $\sum_{n=3}^{\infty}(-1)^{n} \frac{13}{n \sqrt{\ln n}}$

Solution:

Notice that this series fails to converge absolutely, by the p-test. It does converge, however, due to the Cauchy-Leibniz test. Thus the series converges conditionally.
(b) $\sum_{k=1}^{\infty}(-1)^{k} \arctan \left(k^{2}\right)$

Solution:
Since $\arctan \left(k^{2}\right) \rightarrow \pi / 2$ as $k \rightarrow \infty$, the series diverges by the $n^{\text {th }}$-term test for divergence.
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(n!)^{2}}{(2 n)!}$

Solution:
Applying the Ratio Test, we see that the series converges absolutely:

$$
\begin{aligned}
& \left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{((n+1)!)^{2}}{(2(n+1))!}}{\frac{(n!)^{2}}{(2 n)!}}=\frac{(2 n)!}{(2 n+2)!} \frac{((n+1)!)^{2}}{(n!)^{2}}= \\
& \frac{1}{(2 n+2)(2 n+1)}\left(\frac{(n+1)!}{n!}\right)^{2}=\frac{(n+1)^{2}}{(2 n+2)(2 n+1)} \rightarrow \frac{1}{4}<1
\end{aligned}
$$

5. Write each of the following in the form $\mathrm{a}+\mathrm{bi}$. Show your work!
(a) $3(9-4 \mathrm{i})-5(-6-3 \mathrm{i})$

Answer: $57+3 i$
(b) $\quad(1-\mathrm{i})(2-5 \mathrm{i})$

Answer: -4-7i
(c) $(3-\mathrm{i})^{3}$

Answer: $18-26 i$
(d) $\overline{14-345 i}$

Answer: $14+345 i$
(f) $\frac{3-5 i}{1+2 i}$

Answer: $\quad \frac{3-5 i}{1+2 i}=(-48 / 5)+(96 / 5) i$
(g) $\mathrm{i}^{1789}+\mathrm{i}^{444}-\mathrm{i}^{9902}$

Answer: $\mathrm{i}^{1789}+\mathrm{i}^{444}-\mathrm{i}^{9902}=\mathrm{i}^{4(447)+1}+\mathrm{i}^{4(111)}-\mathrm{i}^{4(247)+2}=\mathrm{i}+1+1$
$=2+\mathrm{i}$
6. For each power series below, determine the interval of convergence. Do not investigate the behavior of at endpoints.
(a) $\sum_{n=1}^{\infty} \frac{n^{13}}{13^{n}}(x-13)^{n}$

Solution:

Using the ratio test:

$$
\begin{aligned}
& \left|\frac{\frac{(n+1)^{13}}{13^{n+1}}(x-13)^{n+1}}{\frac{n^{13}}{13^{n}}(x-13)^{n}}\right|=\frac{1}{13} \frac{(n+1)^{13}}{n^{13}}|x-13|= \\
& \frac{1}{13}(1+1 / n)^{13}|x-13| \rightarrow \frac{1}{13}|x-13|
\end{aligned}
$$

Thus the series converges absolutely for $|x-13|<13$. So the interval of convergence is $(0,26)$.
(b) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}(x-4)^{n}$

Solution:

Invoking the $n^{\text {th }}$ root test:

$$
\left|\left(1+\frac{1}{n}\right)^{n^{2}}(x-4)^{n}\right|^{1 / n}=\left(1+\frac{1}{n}\right)^{n}|x-4| \rightarrow e|x-4|
$$

Thus the series converges absolutely for $e|x-4|<1$. So the interval of convergence is $(4-1 / e, 4+1 / e)$.
7. For each power series below, determine the interval of convergence. Investigate end point behavior.
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+13}}(x-13)^{n}$

Solution:
Using the ratio test:
$\left|\frac{\frac{1}{\sqrt{n+14}}(x-13)^{n+1}}{\frac{1}{\sqrt{n+13}}(x-13)^{n}}\right|=\frac{\sqrt{n+13}}{\sqrt{n+14}}|x-13|=\sqrt{\frac{n+13}{n+14}}|x-13| \rightarrow|x-13|$

Thus the series converges absolutely for $|x-13|<1$. So the interval of convergence is (12, 14).

At $x=14$, the series equals:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+13}}(14-13)^{n}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+13}}
$$

which diverges (using the comparison test and the p-test).

At $x=12$, the series equals:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+13}}(12-13)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+13}}
$$

which converges conditionally (using the Cauchy-Leibniz test as well as the fact that the series fails to converge absolutely).
(b) $\sum_{n=1}^{\infty} \frac{13^{n}}{n^{2}} x^{2 n}$

Solution:

Using the ratio test:

$$
\left|\frac{\frac{13^{n+1}}{(n+1)^{2}} x^{2(n+1)}}{\frac{13^{n}}{n^{2}} x^{2 n}}\right|=13 \frac{n^{2}}{(n+1)^{2}} x^{2}=13\left(\frac{n}{n+1}\right)^{2} x^{2} \rightarrow 13 x^{2}
$$

Thus the series converges absolutely for $13 x^{2}<1$. So the interval of convergence is $(-1 / \sqrt{13}, 1 / \sqrt{13})$.

At $x=1 / \sqrt{13}$,
$\sum_{n=1}^{\infty} \frac{13^{n}}{n^{2}} x^{2 n}=\sum_{n=1}^{\infty} \frac{13^{n}}{n^{2}}\left(\frac{1}{13}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
which converges absolutely (using the p-test).

$$
\text { At } x=-1 / \sqrt{13}
$$

$$
\sum_{n=1}^{\infty} \frac{13^{n}}{n^{2}} x^{2 n}=\sum_{n=1}^{\infty} \frac{13^{n}}{n^{2}}\left(\frac{-1}{\sqrt{13}}\right)^{2 n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

which converges absolutely (using the p-test).
8. Find the interval of convergence of each of the following power series:
(a) $\sum_{n=1}^{\infty} \frac{n!}{(1)(3)(5)(7) \ldots(2 n-1)} x^{3 n}$

Solution: Using the ratio test:

$$
\frac{\frac{(n+1)!}{(1)(3)(5)(7) \ldots(2 n-1)(2 n+1)}|x|^{3 n+3}}{\frac{n!}{(1)(3)(5)(7) \ldots(2 n-1)}|x|^{3 n}}=(n+1) \frac{1}{2 n+1}|x|^{3} \rightarrow \frac{1}{2}|x|^{3}
$$

Now, the series converges absolutely when $1 / 2|x|^{3}<1$.
Thus the interval of convergence of our series is:

$$
(-\sqrt[3]{2}, \sqrt[3]{2})
$$

(b) $\sum_{n=1}^{\infty} \frac{7^{n} \sqrt{n^{2}+4}}{\left(n^{4 / 3}+1789\right)^{3}}(x-15)^{n}$

Solution: Applying the ratio test,

$$
\begin{aligned}
& \frac{7^{n+1} \sqrt{(n+1)^{2}+4}}{\frac{\left((n+1)^{4 / 3}+1789\right)^{3}}{7^{n} \sqrt{n^{2}+4}}} \frac{|x-15|^{n+1}}{\left(n^{4 / 3}+1789\right)^{3}} \\
& |x-15|^{n}
\end{aligned}=7\left(\frac{\left(n^{4 / 3}+1789\right)^{3}}{\left((n+1)^{4 / 3}+1789\right)^{3}}\right)|x-15|
$$

Thus the interval of convergence of our series is

$$
\left(15-\frac{1}{7}, 15+\frac{1}{7}\right)
$$

Extra Credit: Using a series representation of $\sin (3 \mathrm{x})$, find constants r and s for which:

$$
\lim _{x \rightarrow 0}\left(\frac{\sin (3 x)}{x^{3}}+\frac{r}{x^{2}}+s\right)=0
$$

Solution:
Since

$$
\sin t=t-\frac{1}{3!} t^{3}+\frac{1}{5!} t^{5}-\ldots
$$

we have:

$$
\begin{aligned}
& \frac{\sin (3 x)}{x^{3}}+\frac{r}{x^{2}}+s=\frac{\sin (3 x)+r x+s x^{3}}{x^{3}}= \\
& \frac{\left(3 x-\frac{3^{3}}{3!} x^{3}+\frac{3^{5}}{5!} x^{5}-\ldots\right)+r x+s x^{3}}{x^{3}}= \\
& \frac{(3+r) x+\left(s-\frac{3^{3}}{3!}\right) x^{3}+\frac{3^{5}}{5!} x^{5}-\ldots}{x^{3}}
\end{aligned}
$$

If this limit equals 0 , then $3+r=0$ and $\mathrm{s}-3^{3} /(3!)=0$.
Hence $r=-3$ and $s=9 / 2$

