
MATH 162         Solutions:  TEST IIi 

 

 
"Then you should say what you mean," the March Hare went on. 

"I do, " Alice hastily replied; "at least I mean what I say, that's the 

same thing, you know." 

"Not the same thing a bit!" said the Hatter. 

"Why, you might just as 

well say that "I see what I eat" is the same 

thing as "I eat what I see!" 

 

- Lewis Carroll, Alice in Wonderland 
 

  

  

  
 

 

 

Instructions:    Answer any 7 of the following 8 problems.  You may answer 

all 8 to obtain extra credit. 

 

1.  Without using l'Hôpital’s rule, find: 
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it follows that: 
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2.  Given y = G(x) below, calculate the value of  G(1313)(0).  (Express your 

answer in factorial form.) 
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Solution: 

 

Beginning with the Maclaurin series for sinh t and then replacing t by x2: 
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Now, multiplying by x3 yields: 
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Now, the general Maclaurin series of G(x) is: 
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Thus the coefficient of x1313 is G(1313)(0) / 1313! 

 

Now the series for x3 sinh (x2) has coefficient of x1313 occur when 4n + 

5=1313, that is, when n =327 (and so 2n + 1=655).  Thus this coefficient is:    

1 / 655! 

Equating G(1313)(0) / 1313! with 1 /655!,   we find that: 

G(1313)(0)   =  1313!  /  655! 
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3.    By dividing power series, find the first three non-zero terms of the 

Maclaurin series of    
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Solution: 
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4.   For each series below, determine absolute convergence, conditional 

convergence or divergence.   Justify each answer.   
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Solution: 

Notice that this series fails to converge absolutely, by the p-test.  It 

does converge, however, due to the Cauchy-Leibniz test.  Thus the 

series converges conditionally. 
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Solution: 

Since arctan(k2) → /2  as k → ∞, the series diverges by the nth-term 

test for divergence. 
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Solution: 

Applying the Ratio Test, we see that the series converges absolutely: 
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5.   Write each of the following in the form a + bi.  Show your work!
 

(a)    3(9 – 4i) – 5(-6 – 3i) 

Answer:   57 + 3i 

 

(b)     (1 – i)(2 – 5i) 
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Answer:   -4 – 7i 

 

(c)     (3 – i)3 

 

Answer:   18 – 26 i  
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Answer:   14 + 345i 
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(g)  i1789 + i444 – i9902   

 

Answer:   i1789 + i444 – i9902  = i4(447)+1 + i4(111) – i4(247) +2  = i + 1 + 1 

= 2 + i  

 

6.    For each power series below, determine the interval of convergence. Do 

not investigate the behavior of at endpoints.   
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Solution: 

Using the ratio test: 
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Thus the series converges absolutely for |x – 13| < 13.  So the interval of 

convergence is  .26,0  
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Solution: 

Invoking the nth root test: 
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Thus the series converges absolutely for e |x – 4| < 1.  So the interval of 

convergence is (4 – 1/e, 4 + 1/e). 
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7.   For each power series below, determine the interval of convergence.  

Investigate end point behavior. 
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Solution: 

Using the ratio test: 

 

|13||13|
14

13
|13|

14

13

)13(
13

1

)13(
14

1 1




















xx
n

n
x

n

n

x
n

x
n

n

n

 

Thus the series converges absolutely for |x – 13| < 1.  So the interval of 

convergence is (12, 14).   

 

At x = 14, the series equals: 
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which diverges (using the comparison test and the p-test). 

 

At x = 12, the series equals: 
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which converges conditionally  (using the Cauchy-Leibniz test as well as the 

fact that the series fails to converge absolutely). 
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Solution: 

Using the ratio test: 

 

22

2

2

2

2

2

2

)1(2

2

1

13
1

13
)1(

13
13

)1(

13

xx
n

n
x

n

n

x
n

x
n

n
n

n
n





















 

Thus the series converges absolutely for 13x2 < 1.  So the interval of 

convergence is  .13/1,13/1  
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which converges absolutely (using the p-test). 
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which converges absolutely (using the p-test). 

 

 

8.   Find the interval of convergence of each of the following power series: 
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Solution: Using the ratio test: 
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Now, the series converges absolutely when  ½ |x|3 < 1. 

Thus the interval of convergence of our series is: 

 33 2,2  
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Solution:  Applying the ratio test, 
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Thus the interval of convergence of our series is 
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Extra Credit:   Using a series representation of sin(3x), find constants  

r and s for which: 
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Solution: 

Since 
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If this limit equals 0, then 3 + r = 0 and s – 33/(3!)  = 0.   

Hence r = -3 and s =  9/2 


