WORKSHEET XIV: A BRIEF INTRODUCTION TO PROBABILITY

Definitions:

- $\mathrm{f}(\mathrm{x})$ is a probability density function (pdf) for X if

$$
\text { the probability that } a \leq X \leq b \text { is } \int_{a}^{b} f(x) d x
$$

- The Mean value for X with probability density function $\mathrm{f}(\mathrm{x})$ is

$$
\mu=\int_{-\infty}^{\infty} x f(x) d x \quad \text { (the weighted average value of } \mathrm{x} \text {) }
$$

- The Median value for X with probability density function $\mathrm{f}(\mathrm{x})$ is a value T such that

$$
\int_{-\infty}^{T} f(x) d x=\int_{T}^{\infty} f(x) d x=\frac{1}{2}
$$

The probability density function for the exponential distribution in general (where $\lambda>0$):

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

The mean $=1 / \lambda$

Example: The probability density function for the time until failure for a smart phone chip is given by

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
0.04 e^{-0.04 x} & \text { if } x \geq 0
\end{array}, \text { where } x\right. \text { is measured in weeks. }
$$

C. Find the probability that a chip does NOT fail in the first 5 weeks:

$$
\operatorname{Prob}(X \geq 5)=\int_{5}^{\infty} 0.04 e^{-0.04 t} d t=1-\int_{0}^{5} 0.04 e^{-0.04 t} d t=1-0.181=0.819
$$

D. Find the probability that the chip fails at a time between 5 and 20 weeks.

$$
\operatorname{Prob}(5 \leq X \leq 20)=\int_{5}^{20} 0.04 e^{-0.04 t} d t=0.369
$$

E. Find the probability that the chip lasts longer than 36 weeks:

$$
\operatorname{Prob}(X \geq 36)=\int_{36}^{\infty} 0.04 e^{-0.04 t} d t=1-\int_{0}^{36} 0.04 e^{-0.04 t} d t=1-0.763=0.237
$$

F. Find the median failure time for this chip: median $=T$, where $\operatorname{Prob}(\mathrm{X} \leq T)=0.5$.
$\operatorname{Prob}(X \leq T)=\int_{0}^{T} 0.04 e^{-0.04 x} d x=0.5$
Solve the equation for T :
$-\left.e^{-0.04 x}\right|_{0} ^{T}=-e^{-0.04 T}-\left(-e^{0}\right)=1-e^{-0.04 T}=0.5$
$1-0.5=e^{-0.4 T}, 0.5=e^{-0.4 T}, \quad \ln (0.5)=-0.04 T$
$T=\frac{\ln (0.5)}{-0.04}=\frac{-\ln (2)}{-0.04}=\frac{\ln (2)}{0.04}=17.32$ weeks
G. Find the mean failure time for this chip:

Mean $=$ weighted average $=$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{\infty} x\left(0.04 e^{-0.04 x}\right) d x= \\
& \lim _{c \rightarrow \infty}\left(-25 e^{-0.04 x}-\left.x e^{-0.04 x}\right|_{0} ^{c}\right) \\
& =\lim _{c \rightarrow \infty}\left(-25 e^{-c}-c e^{-c}\right)-\left(-25 e^{0}-0\right) \\
& =(0-0)-(-25-0)=25 \text { weeks }
\end{aligned}
$$

