WORKSHEET IV (REVISED)

PARAMETRIC EQUATIONS - A BRIEF INTRODUCTION

1. Sketch the curve $\mathrm{x}(\mathrm{t})=3 \mathrm{t}, \mathrm{y}(\mathrm{t})=\mathrm{t}^{2}+1$. Express y as a function of x.
2. Describe the parameterized curve $\mathrm{x}(\mathrm{t})=3 \cos \mathrm{t}, \mathrm{y}(\mathrm{t})=4 \cos \mathrm{t}$, $0 \leq \mathrm{t} \leq 2 \pi$.
What is the relationship between the given curve above and each of the following?
(a) $x(t)=-3 \cos t, y(t)=4 \cos t, 0 \leq t \leq 2 \pi$.
(b) $x(t)=3 \cos 2 t, y(t)=4 \cos 2 t, 0 \leq t \leq 2 \pi$.
(c) $\quad \mathrm{x}(\mathrm{t})=1-3 \cos 2 \mathrm{t}, \mathrm{y}(\mathrm{t})=1-4 \cos 2 \mathrm{t}, 0 \leq \mathrm{t} \leq 2 \pi$.
3. Show that the following is a parameterization of the cycloid:

$$
x(\theta)=a(\theta-\sin \theta), y(\theta)=a(1-\cos \theta), \quad-\infty<\theta<\infty .
$$

4. Show that $x=a \cos t+h, y=b \sin t+k, 0 \leq t \leq 2 \pi$, is a parametric equation of an ellipse with center at (h, k) and axes of length 2 a and 2 b .
5. Find a parameterization of the straight line $\mathrm{y}=3 \mathrm{x}+4$.
6. Find a parameterization of the straight line segment joining the points $\mathrm{P}=(3,5)$ to $\mathrm{Q}=(7,11)$.
7. Find a parameterization of the curve $y=x^{2}$ from

$$
\mathrm{P}=(-1,1) \text { to } \mathrm{Q}=(4,16) .
$$

8. Generalize problem 7 for any curve of the form $y=f(x)$ from $\mathrm{x}=\mathrm{a}$ to $\mathrm{x}=\mathrm{b}$.
9. Find an equation of a line tangent to the given curve at the given point.
(a) $\mathrm{x}=\sin 2 \mathrm{pt}, \mathrm{y}=\cos 2 \mathrm{pt}, \mathrm{t}=-1 / 6$
(b) $\mathrm{x}=1 / \mathrm{t}, \mathrm{y}=-2+\ln \mathrm{t}, \mathrm{t}=1$
(c) $\mathrm{x}=\mathrm{t}-\sin \mathrm{t}, \mathrm{y}=1-\cos \mathrm{t}, \mathrm{t}=\mathrm{p} / 3$
(d) $\mathrm{x}=\mathrm{t}+\mathrm{e}^{\mathrm{t}}, \mathrm{y}=1-\mathrm{e}^{\mathrm{t}}, \mathrm{t}=0$.
10. Find $d^{2} y / d x^{2}$ as a function of time if $x=t-t^{2}$ and $y=t-t^{3}$.
11. Find an equation for the line in the $x y$-plane that is tangent to the curve $X=1 / 2 \tan t, y=1 / 2 \operatorname{sect} t$, at $t=p / 3$. Also find $d^{2} y / d^{2}$ at the given point.

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE

