WORKSHEET IV (REVISED)

PARAMETRIC EQUATIONS - A BRIEF INTRODUCTION

- 1. Sketch the curve x(t) = 3t, $y(t) = t^2 + 1$. Express *y* as a function of *x*.
- 2. Describe the parameterized curve $x(t) = 3 \cos t$, $y(t) = 4 \cos t$, $0 \le t \le 2\pi$.

What is the relationship between the given curve above and each of the following?

- (a) $x(t) = -3 \cos t, y(t) = 4 \cos t, 0 \le t \le 2\pi$.
- (b) $x(t) = 3 \cos 2t, y(t) = 4 \cos 2t, 0 \le t \le 2\pi.$
- (c) $x(t) = 1 3 \cos 2t$, $y(t) = 1 4 \cos 2t$, $0 \le t \le 2\pi$.
- 3. Show that the following is a parameterization of the <u>cycloid</u>:

$$x(\theta) = a(\theta - \sin \theta), y(\theta) = a(1 - \cos \theta), -\infty < \theta < \infty.$$

- 4. Show that $x = a \cos t + h$, $y = b \sin t + k$, $0 \le t \le 2\pi$, is a parametric equation of an ellipse with center at (h, k) and axes of length 2a and 2b.
- 5. Find a parameterization of the straight line y = 3x + 4.
- 6. Find a parameterization of the straight line segment joining the points P = (3, 5) to Q = (7, 11).

- 7. Find a parameterization of the curve $y = x^2$ from P = (-1, 1) to Q = (4, 16).
- 8. Generalize problem 7 for any curve of the form y = f(x) from x = a to x = b.
- 9. Find an equation of a line tangent to the given curve at the given point.
- (a) $x = \sin 2pt$, $y = \cos 2pt$, t = -1/6
- (b) x = 1/t, $y = -2 + \ln t$, t = 1
- (c) $x = t \sin t$, $y = 1 \cos t$, t = p/3
- (d) $x = t + e^t, y = 1 e^t, t = 0.$
- 10. Find d^2y/dx^2 as a function of time if $x = t t^2$ and $y = t t^3$.

11. Find an equation for the line in the xy-plane that is tangent to the curve

 $X = \frac{1}{2} \tan t$, $y = \frac{1}{2} \sec t$, at t = p/3. Also find $\frac{d^2y}{dx^2}$ at the given point.

the butterfly curve

COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE