1. For each numerical series below, determine convergence or divergence. In the case of convergence, determine if the series converges absolutely or conditionally. Justify each answer.
(a) $\sum_{m=1}^{\infty}\left(\frac{-e}{m}\right)^{m}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{3 n} 2^{n}}{\left(1+\frac{1}{n}\right)^{n^{2}}}$
(c) $\sum_{n=3}^{\infty}(-1)^{n} \frac{5}{\ln n}$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n!)^{2} 3^{n}}{(2 n+1)!}$
(e) $\sum_{k=1}^{\infty}(-1)^{k} \frac{k(k+1)\left(k^{2}+5\right)}{(k-13 \ln k)^{4}}$
(f) $\sum_{n=1}^{\infty} \frac{5^{n}+7}{11^{n}}$
(g) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(3 n) \text { ! }}{(n!)^{3}}$
(h) $\sum_{n=1}^{\infty}(-1)^{n} \frac{4^{n}(n!)^{2}}{(2 n)!}$
2. For each of the following numerical series, determine if the series diverges, converges conditionally or converges absolutely. Justify your answers!
(a) $\quad \sum_{n=1}^{\infty}(-1)^{n} \cos \left(\frac{1}{5+n^{7} \ln n}\right)$
(b) $\quad \sum_{n=2}^{\infty} \frac{\sin (3 n+5)}{n(\ln n)^{2}}$
(c) $\quad \sum_{n=3}^{\infty}(-1)^{n} \frac{5}{\ln n}$
(d) $\quad \sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1+n}{5+n^{2}}\right)^{n}$
(e) $\quad \sum_{k=1}^{\infty}(-1)^{k} \frac{k(k+1)\left(k^{2}+5\right)}{(k-13 \ln k)^{4}}$
(f) $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{\left(1+\frac{1.3}{n}\right)^{n^{2}}}$
3. Does absolute convergence imply convergence? Does convergence imply absolute convergence? Why?
4. How many terms are required in order to estimate each of the following sums accurately to 4 decimal places?
(a) $\quad \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{8}}$
(c) $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\ln n}$
5. For each of the following power series, determine the interval of convergence. Do not study end-point behavior.
(a) $\quad \sum_{n=1}^{\infty} \frac{3^{n}}{n(n+5)} x^{n}$
(b) $\quad \sum_{n=1}^{\infty} \frac{1}{n(n+3)(n+11)}(x-4)^{n}$
(c) $\quad \sum_{n=1}^{\infty} \frac{n^{n}}{n!}(x-1)^{n}$
(d) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}(x-4)^{n}$
(e) $\sum_{n=0}^{\infty} \frac{1}{2^{n} \sqrt{n+1}}(x+3)^{n}$
(f) $\sum_{n=1}^{\infty} \frac{7^{n}}{n^{5} e^{n}} x^{n}$

6. (University of Michigan final exam)

[6 points] The power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{n}}{5^{n} n}
$$

has a radius of convergence of 5 . For each of the endpoints of the interval of convergence, fill in the first two blanks with the endpoint and the series at that endpoint (in sigma notation or by writing out the first 4 terms), and then indicate whether the series converges at that endpoint in the final blank. You do not need to show your work.

At the endpoint $x=$ \qquad the series is \qquad
and that series \qquad

At the endpoint $x=$ \qquad the series is \qquad
and that series \qquad —.

7. (University of Michigan final exam)

[6 points] Find the radius of convergence of the power series. You do not need to find the interval of convergence.

Consider the function $g(x)$ defined by the power series

$$
g(x)=\sum_{n=0}^{\infty} \frac{2^{n}(n!)^{2} x^{n}}{(2 n)!}
$$

Pure mathematics is, in its way, the poetry of logical ideas.

- Albert Einstein

