MATH 162

PRACTICE QUIZ VIII

1. Find a power series expansion of $\int e^{-x^{2}} d x$
2. For each of the following functions, find the $4^{\text {th }}$ order Taylor polynomial centered at $\mathrm{x}=c$:
(a) $y=\sinh x+3 \cosh x, c=0$
(b) $y=1+x+e^{3 x}, c=0$
(c) $\mathrm{y}=1 /(\mathrm{x}+2), \mathrm{c}=0$
(d) $\mathrm{y}=\ln (1+\mathrm{x}), \mathrm{c}=0$
(e) $y=x^{1 / 2}, c=4$
(f) $\mathrm{y}=\sin \mathrm{x}, \mathrm{c}=\pi / 4$
(g) $y=1+x+3 x^{2}-4 x^{3}, c=0$
(h) $y=1+x+3 x^{2}-4 x^{3}, c=1$
(i) $y=x e^{2 x}, c=0$
3. Using multiplication of power series, find the first four non-zero terms of the Maclaurin series expansion of $f(x)=e^{2 x} \cos (3 x)$.
4. Using division of power series, find the first four non-zero terms of the Maclaurin series expansion of

$$
G(x)=\frac{\cosh x}{1+x+x^{2}}
$$

5. Using your choice of technique, find the first four non-zero terms of the Maclaurin series expansion of:
(a) $y=x e^{-4 x}$
(b) $y=(2+x) /(1-x)$
(c) $y=\left(1-x-x^{2}\right) e^{2 x}$
(d) $y=(\sin x) \ln (1+x)$
(e) $y=x \cos ^{2} x$
(f) $y=e^{x^{3}}$
(g) $y=\exp \left(1+x^{2}\right)$
6. Find the Taylor series expansion of $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ at $\mathrm{x}=\mathrm{c}$.
7. (University of Michigan final exam problem)
[15 points] The graph shows the area between the graphs of $f(x)=6 \cos (\sqrt{2 x})$ and $g(x)=x^{2}+x$. Let $\left(x_{0}, y_{0}\right)$ be the intersection point between the graphs of $f(x)$ and $g(x)$.

a. [6 points] Compute $P(x)$, the function containing the first three nonzero terms of the Taylor series about $x=0$ of $f(x)=6 \cos (\sqrt{2 x})$.
b. [3 points] Use $P(x)$ to approximate the value of x_{0}.
c. [3 points] Use $P(x)$ and the value of x_{0} you computed in the previous question to write an integral that approximates the value of the shaded area. Find the value of this integral.
d. [1 point] Graph $f(x)$ and $g(x)$ in your calculator. Use the graphs to find an approximate value for x_{0}.
e. [2 points] Write a definite integral in terms of $f(x)$ and $g(x)$ that represents the value of the shaded area. Find its value using your calculator.

8. Without using L'Hôpital's rule, find

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)-x}{1-\cos x}
$$

9. By differentiating an appropriate power series, compute the following sum:

$$
\sum_{n=1}^{\infty} \frac{n}{5^{n}}
$$

10. Find the Taylor series of

$$
F(x)=\cos \sqrt{x+1}
$$

centered at $\mathrm{x}=-1$.
11. Let $F(x)=x^{4} \arctan (3 x)$. Find $F^{(2345)}(0)$.

Hint: Beginning with a geometric series, find the Maclaurin series expansion of $\arctan (t)$.
12. Without using L'Hôpital's rule, find

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}-4 \cos \left(x^{2}\right)-2 x+5-2 e^{x^{2}}}{\sin \left(x^{3}\right)+x^{5} e^{x}}
$$

13. Find the first four non-zero terms in the Maclaurin expansion of $f(x)=\tan x$ by dividing the series for $\sin \mathrm{x}$ by the series for $\cos \mathrm{x}$.

The graph of f is shown.

(a) Explain why the series

$$
1.6-0.8(x-1)+0.4(x-1)^{2}-0.1(x-1)^{3}+\cdots
$$

is not the Taylor series of f centered at 1 .
(b) Explain why the series

$$
2.8+0.5(x-2)+1.5(x-2)^{2}-0.1(x-2)^{3}+\cdots
$$

is not the Taylor series of f centered at 2 .
If the radius of convergence of the power series $\Sigma_{n=0}^{\infty} c_{n} X^{n}$ is 10 , what is the radius of convergence of the series $\sum_{n=1}^{\infty} n c_{n} X^{n-1}$? Why?

Suppose you know that the series $\sum_{n=0}^{\infty} b_{n} X^{n}$ converges for $|x|<2$. What can you say about the following series? Why?

$$
\sum_{n=0}^{\infty} \frac{b_{n}}{n+1} x^{n+1}
$$

(a) Use differentiation to find a power series representation for

$$
f(x)=\frac{1}{(1+x)^{2}}
$$

What is the radius of convergence?
(b) Use part (a) to find a power series for

$$
f(x)=\frac{1}{(1+x)^{3}}
$$

(c) Use part (b) to find a power series for

$$
f(x)=\frac{x^{2}}{(1+x)^{3}}
$$

(a) Find a power series representation for $f(x)=\ln (1+x)$.

What is the radius of convergence?
(b) Use part (a) to find a power series for $f(x)=x \ln (1+x)$.
(c) Use part (a) to find a power series for $f(x)=\ln \left(x^{2}+1\right)$.

Find the domain of the Bessel function

$$
J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} X^{2 n}}{2^{2 n}(n!)^{2}}
$$

Show that the Bessel function

$$
J_{0}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} X^{2 n}}{2^{2 n}(n!)^{2}}
$$

is a solution to the following differential equation.

$$
x^{2} J_{0}^{\prime \prime}(x)+x J_{0}^{\prime}(x)+x^{2} J_{0}(x)=0
$$

ne cannot escape the feeling that these mathematical formulas have an independent existence and an intelligence of their own, that they are wiser than we are, wiser even than their discoverers.

- Heinrich Hertz

